Paul Campitelli, I Can Kazan, Sean Hamilton, S Banu Ozkan
{"title":"Dynamic Allostery: Evolution's Double-Edged Sword in Protein Function and Disease.","authors":"Paul Campitelli, I Can Kazan, Sean Hamilton, S Banu Ozkan","doi":"10.1016/j.jmb.2025.169175","DOIUrl":null,"url":null,"abstract":"<p><p>Allostery is a core mechanism in biology that allows proteins to communicate and regulate activity over long structural distances. While classical models of allostery focus on conformational changes triggered by ligand binding, dynamic allostery-where protein function is modulated through alterations in thermal fluctuations without major conformational shifts-has emerged as a critical evolutionary mechanism. This review explores how evolution leverages dynamic allostery to fine-tune protein function through subtle mutations at distal sites, preserving core structural architecture while dramatically altering functional properties. Using a combination of computational approaches including Dynamic Flexibility Index (DFI), Dynamic Coupling Index (DCI), and vibrational density of states (VDOS) analysis, we demonstrate that functional adaptations in proteins often involve \"hinge-shift\" mechanisms, where redistribution of rigid and flexible regions modulates collective motions without changing the overall fold. This evolutionary principle is a double-edged sword: the same mechanisms that enable functional innovation also create vulnerabilities that can be exploited in disease states. Disease-associated variants frequently occur at positions highly coupled to functional sites despite being physically distant, forming Dynamic Allosteric Residue Couples (DARC sites). We demonstrate applications of these principles in understanding viral evolution, drug resistance, and capsid assembly dynamics. Understanding dynamic allostery provides critical insights into protein evolution and offers new avenues for therapeutic interventions targeting allosteric regulation.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169175"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169175","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Allostery is a core mechanism in biology that allows proteins to communicate and regulate activity over long structural distances. While classical models of allostery focus on conformational changes triggered by ligand binding, dynamic allostery-where protein function is modulated through alterations in thermal fluctuations without major conformational shifts-has emerged as a critical evolutionary mechanism. This review explores how evolution leverages dynamic allostery to fine-tune protein function through subtle mutations at distal sites, preserving core structural architecture while dramatically altering functional properties. Using a combination of computational approaches including Dynamic Flexibility Index (DFI), Dynamic Coupling Index (DCI), and vibrational density of states (VDOS) analysis, we demonstrate that functional adaptations in proteins often involve "hinge-shift" mechanisms, where redistribution of rigid and flexible regions modulates collective motions without changing the overall fold. This evolutionary principle is a double-edged sword: the same mechanisms that enable functional innovation also create vulnerabilities that can be exploited in disease states. Disease-associated variants frequently occur at positions highly coupled to functional sites despite being physically distant, forming Dynamic Allosteric Residue Couples (DARC sites). We demonstrate applications of these principles in understanding viral evolution, drug resistance, and capsid assembly dynamics. Understanding dynamic allostery provides critical insights into protein evolution and offers new avenues for therapeutic interventions targeting allosteric regulation.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.