Volker Morath, Stefanie Maurer, Annette Feuchtinger, Rebecca Walser, Martin Schlapschy, Florian Bolze, Thomas Metzler, Johanna Bruder, Katja Steiger, Axel Walch, Martin Klingenspor, Arne Skerra
{"title":"Long-Acting Human PASylated Leptin Reaches the Murine Central Nervous System and Offers Potential for Optimized Replacement Therapy.","authors":"Volker Morath, Stefanie Maurer, Annette Feuchtinger, Rebecca Walser, Martin Schlapschy, Florian Bolze, Thomas Metzler, Johanna Bruder, Katja Steiger, Axel Walch, Martin Klingenspor, Arne Skerra","doi":"10.1021/acs.molpharmaceut.4c01503","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the multifaceted role of leptin for energy homeostasis and its broad therapeutic potential, the FDA/EMA-approved metreleptin constitutes the only leptin drug to date. To translate the promising results from previous studies on murine PASylated leptin with improved solubility and extended plasma half-life using PASylation technology─a biological alternative to PEGylation─we have developed a second-generation human leptin drug candidate and tested it rigorously <i>in vitro</i> and <i>in vivo</i>. To this end, the exposed hydrophobic Trp residue at position 100 in human leptin was replaced by Gln, which, together with the genetic fusion with a 600-residue PAS polypeptide, yielded a protein with high solubility, folding stability and receptor-stimulatory activity. In a pharmacokinetic (PK) study with wild-type mice, this modified human leptin showed an extended plasma half-life of 18.8 ± 3.6 h after subcutaneous (s.c.) injection. Furthermore, leptin-deficient mice were dosed s.c. with the modified human leptin carrying two different PAS fusion tags, PAS#1 or P/A#1, each comprising 600 residues. After only four doses, the disease phenotype, including morbid adiposity, hyperphagia, and hepatic steatosis, was completely reversed by both PASylated leptin versions, but not by the non-PASylated leptin if administered at the same dose. To assess its tissue distribution, P/A(200)-huLeptin<sup>W100Q</sup> was doubly labeled with two fluorescent dyes, which were specifically attached to the leptin and the PAS moiety, respectively. Analysis of relevant mouse organs by light sheet fluorescence microscopy after clearance revealed colocalized signals in the kidney and liver, thus indicating general stability of the PAS-leptin fusion protein <i>in vivo</i>. However, discrete signals were observed in the hypothalamic region, only with leptin detectable in the choroid plexus, which implies cleavage of the PAS tag during transcytosis across the physiological barriers. This study should pave the way toward a second-generation leptin drug enabling prolonged dosing intervals.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"3017-3032"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01503","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the multifaceted role of leptin for energy homeostasis and its broad therapeutic potential, the FDA/EMA-approved metreleptin constitutes the only leptin drug to date. To translate the promising results from previous studies on murine PASylated leptin with improved solubility and extended plasma half-life using PASylation technology─a biological alternative to PEGylation─we have developed a second-generation human leptin drug candidate and tested it rigorously in vitro and in vivo. To this end, the exposed hydrophobic Trp residue at position 100 in human leptin was replaced by Gln, which, together with the genetic fusion with a 600-residue PAS polypeptide, yielded a protein with high solubility, folding stability and receptor-stimulatory activity. In a pharmacokinetic (PK) study with wild-type mice, this modified human leptin showed an extended plasma half-life of 18.8 ± 3.6 h after subcutaneous (s.c.) injection. Furthermore, leptin-deficient mice were dosed s.c. with the modified human leptin carrying two different PAS fusion tags, PAS#1 or P/A#1, each comprising 600 residues. After only four doses, the disease phenotype, including morbid adiposity, hyperphagia, and hepatic steatosis, was completely reversed by both PASylated leptin versions, but not by the non-PASylated leptin if administered at the same dose. To assess its tissue distribution, P/A(200)-huLeptinW100Q was doubly labeled with two fluorescent dyes, which were specifically attached to the leptin and the PAS moiety, respectively. Analysis of relevant mouse organs by light sheet fluorescence microscopy after clearance revealed colocalized signals in the kidney and liver, thus indicating general stability of the PAS-leptin fusion protein in vivo. However, discrete signals were observed in the hypothalamic region, only with leptin detectable in the choroid plexus, which implies cleavage of the PAS tag during transcytosis across the physiological barriers. This study should pave the way toward a second-generation leptin drug enabling prolonged dosing intervals.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.