{"title":"Enhancing Transthyretin Binding Affinity Prediction with a Consensus Model: Insights from the Tox24 Challenge.","authors":"Xiaolin Pan, Yaowen Gu, Weijun Zhou, Yingkai Zhang","doi":"10.1021/acs.chemrestox.4c00560","DOIUrl":null,"url":null,"abstract":"<p><p>Transthyretin (TTR) plays a vital role in thyroid hormone transport and homeostasis in both the blood and target tissues. Interactions between exogenous compounds and TTR can disrupt the function of the endocrine system, potentially causing toxicity. In the Tox24 challenge, we leveraged the data set provided by the organizers to develop a deep learning-based consensus model, integrating sPhysNet, KANO, and GGAP-CPI for predicting TTR binding affinity. Each model utilized distinct levels of molecular information, including 2D topology, 3D geometry, and protein-ligand interactions. Our consensus model achieved favorable performance on the blind test set, yielding an RMSE of 20.8 and ranking fifth among all submissions. Following the release of the blind test set, we incorporated the leaderboard test set into our training data, further reducing the RMSE to 20.6 in an offlineretrospective study. These results demonstrate that combining three regression models across different modalities significantly enhances the predictive accuracy. Furthermore, we employ the standard deviation of the consensus model's ensemble outputs as an uncertainty estimate. Our analysis reveals that both the RMSE and interval error of predictions increase with rising uncertainty, indicating that the uncertainty can serve as a useful measure of prediction confidence. We believe that this consensus model can be a valuable resource for identifying potential TTR binders and predicting their binding affinity in silico. The source code for data preparation, model training, and prediction can be accessed at https://github.com/xiaolinpan/tox24_challenge_submission_yingkai_lab.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"900-908"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00560","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transthyretin (TTR) plays a vital role in thyroid hormone transport and homeostasis in both the blood and target tissues. Interactions between exogenous compounds and TTR can disrupt the function of the endocrine system, potentially causing toxicity. In the Tox24 challenge, we leveraged the data set provided by the organizers to develop a deep learning-based consensus model, integrating sPhysNet, KANO, and GGAP-CPI for predicting TTR binding affinity. Each model utilized distinct levels of molecular information, including 2D topology, 3D geometry, and protein-ligand interactions. Our consensus model achieved favorable performance on the blind test set, yielding an RMSE of 20.8 and ranking fifth among all submissions. Following the release of the blind test set, we incorporated the leaderboard test set into our training data, further reducing the RMSE to 20.6 in an offlineretrospective study. These results demonstrate that combining three regression models across different modalities significantly enhances the predictive accuracy. Furthermore, we employ the standard deviation of the consensus model's ensemble outputs as an uncertainty estimate. Our analysis reveals that both the RMSE and interval error of predictions increase with rising uncertainty, indicating that the uncertainty can serve as a useful measure of prediction confidence. We believe that this consensus model can be a valuable resource for identifying potential TTR binders and predicting their binding affinity in silico. The source code for data preparation, model training, and prediction can be accessed at https://github.com/xiaolinpan/tox24_challenge_submission_yingkai_lab.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.