Innovations, Challenges and Future Directions of T7RNA Polymerase in Microbial Cell Factories.

IF 3.9 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
ACS Synthetic Biology Pub Date : 2025-05-16 Epub Date: 2025-04-10 DOI:10.1021/acssynbio.5c00139
Sefli Sri Wahyu Effendi, I-Son Ng
{"title":"Innovations, Challenges and Future Directions of T7RNA Polymerase in Microbial Cell Factories.","authors":"Sefli Sri Wahyu Effendi, I-Son Ng","doi":"10.1021/acssynbio.5c00139","DOIUrl":null,"url":null,"abstract":"<p><p>The study of \"resource allocator\" bacteriophage T7 RNA polymerase (T7RNAP) has garnered significant interest, particularly for optimizing transcriptional systems in microbial cell factories (MCFs). Most previous reviews have primarily focused on T7RNAP by dissecting specific aspects of its molecular structure and functional dynamics; this critical review seeks to broaden the scope. We emphasize a comprehensive guide in utilizing the versatile T7RNAP variants, covering both fundamental principles and fine-tuned circuit designs for synthetic biology applications. Recent advancements in engineered T7RNAP with enhanced specificity and controllability are also highlighted. Furthermore, we discuss the host compatibility considerations for implementing T7RNAP systems in sustainable bioproduction. Finally, key challenges of regulatory complexities and emerging opportunities for next-generation T7RNAP technology are discussed, reinforcing future directions for improving MCF performance.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"1381-1396"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090346/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.5c00139","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The study of "resource allocator" bacteriophage T7 RNA polymerase (T7RNAP) has garnered significant interest, particularly for optimizing transcriptional systems in microbial cell factories (MCFs). Most previous reviews have primarily focused on T7RNAP by dissecting specific aspects of its molecular structure and functional dynamics; this critical review seeks to broaden the scope. We emphasize a comprehensive guide in utilizing the versatile T7RNAP variants, covering both fundamental principles and fine-tuned circuit designs for synthetic biology applications. Recent advancements in engineered T7RNAP with enhanced specificity and controllability are also highlighted. Furthermore, we discuss the host compatibility considerations for implementing T7RNAP systems in sustainable bioproduction. Finally, key challenges of regulatory complexities and emerging opportunities for next-generation T7RNAP technology are discussed, reinforcing future directions for improving MCF performance.

微生物细胞工厂中T7RNA聚合酶的创新、挑战和未来方向
“资源分配器”噬菌体T7RNA聚合酶(T7RNAP)的研究引起了人们极大的兴趣,特别是在微生物细胞工厂(mcf)中优化转录系统。大多数以往的评论主要集中在T7RNAP通过剖析其分子结构和功能动力学的具体方面;这篇批判性的评论试图扩大范围。我们强调了一个综合的指南,利用多用途的T7RNAP变体,涵盖了合成生物学应用的基本原理和微调电路设计。本文还重点介绍了工程化T7RNAP在增强特异性和可控性方面的最新进展。此外,我们讨论了在可持续生物生产中实施T7RNAP系统的宿主兼容性考虑因素。最后,讨论了监管复杂性的关键挑战和下一代T7RNAP技术的新兴机遇,加强了改善MCF性能的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信