Giang N T Le, Jaewan Jang, Maruti Uppalapati, G Andrew Woolley
{"title":"Optimized Phage Display-Based Selection for the Development of Heterodimerizing Optogenetic Tools.","authors":"Giang N T Le, Jaewan Jang, Maruti Uppalapati, G Andrew Woolley","doi":"10.1021/acssynbio.5c00167","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple display techniques, including phage display, mRNA display, and ribosome display, have been used to expand the optogenetic toolbox beyond what nature provides. These techniques are most often applied to the development of binding partners that selectively recognize different conformational states of photoswitchable proteins. However, for some targets, in particular the spectrally diverse cyanobacteriochrome (CBCR) GAF domain family, the subtle differences between conformational states pose a significant challenge to discovering highly selective binders. We present an optimized phage display-based protocol designed to effectively capture these subtle changes. This optimized protocol applies high selection pressure by changing the elution method and tightening negative selection, leading to the enrichment of selective binders. Through multiple selection campaigns, we demonstrate the utility of this protocol for identifying highly selective binders.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"2400-2404"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.5c00167","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple display techniques, including phage display, mRNA display, and ribosome display, have been used to expand the optogenetic toolbox beyond what nature provides. These techniques are most often applied to the development of binding partners that selectively recognize different conformational states of photoswitchable proteins. However, for some targets, in particular the spectrally diverse cyanobacteriochrome (CBCR) GAF domain family, the subtle differences between conformational states pose a significant challenge to discovering highly selective binders. We present an optimized phage display-based protocol designed to effectively capture these subtle changes. This optimized protocol applies high selection pressure by changing the elution method and tightening negative selection, leading to the enrichment of selective binders. Through multiple selection campaigns, we demonstrate the utility of this protocol for identifying highly selective binders.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.