Optimizing entropy production in bi-diffusive convection within trapezoidal Porous enclosure using radiative trihybrid nanofluids and T-shaped baffle

IF 2.5 3区 工程技术 Q2 MECHANICS
Samrat Hansda , Anirban Chattopadhyay , Krishno D. Goswami , Swapan K. Pandit , Hakan F. Öztop , Mikhail A. Sheremet
{"title":"Optimizing entropy production in bi-diffusive convection within trapezoidal Porous enclosure using radiative trihybrid nanofluids and T-shaped baffle","authors":"Samrat Hansda ,&nbsp;Anirban Chattopadhyay ,&nbsp;Krishno D. Goswami ,&nbsp;Swapan K. Pandit ,&nbsp;Hakan F. Öztop ,&nbsp;Mikhail A. Sheremet","doi":"10.1016/j.euromechflu.2025.204268","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores entropy production optimization and thermosolutal transfer enhancement in trapezoidal porous enclosure, commonly used in solar energy systems, electronic cooling, and chemical reactors. The objective is to evaluate the effects of radiative trihybrid nanoliquids on heat and mass transfer in a trapezoidal porous cavity filled with aluminum oxide, copper oxide, and silver nanoparticles dispersed in water, featuring a centrally located T-shaped cold baffle. The lower boundary of the cavity is uniformly heated and soluted, the side boundaries are cooled with low solute concentrations, and the upper boundary is insulated. The governing equations are solved using a Higher Order Compact (HOC) numerical scheme, focusing on parameters such as the Rayleigh number, radiation parameter, buoyancy ratio, and nanoparticle concentration. Results indicate that increasing the Rayleigh number from <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> significantly enhances heat and mass transfer rates. Average Nusselt and Sherwood numbers are increased up to 53.04% and 252.49%, respectively, across different configurations. Additionally, raising the radiation parameter values from 1 to 5 boosts the average Nusselt number up to 197.09%, highlighting the dominance of radiative thermal transport. The T-shaped baffle significantly influences flow patterns, reduces entropy generation, and optimizes thermal and solutal transport.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"113 ","pages":"Article 204268"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754625000421","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores entropy production optimization and thermosolutal transfer enhancement in trapezoidal porous enclosure, commonly used in solar energy systems, electronic cooling, and chemical reactors. The objective is to evaluate the effects of radiative trihybrid nanoliquids on heat and mass transfer in a trapezoidal porous cavity filled with aluminum oxide, copper oxide, and silver nanoparticles dispersed in water, featuring a centrally located T-shaped cold baffle. The lower boundary of the cavity is uniformly heated and soluted, the side boundaries are cooled with low solute concentrations, and the upper boundary is insulated. The governing equations are solved using a Higher Order Compact (HOC) numerical scheme, focusing on parameters such as the Rayleigh number, radiation parameter, buoyancy ratio, and nanoparticle concentration. Results indicate that increasing the Rayleigh number from 104 to 106 significantly enhances heat and mass transfer rates. Average Nusselt and Sherwood numbers are increased up to 53.04% and 252.49%, respectively, across different configurations. Additionally, raising the radiation parameter values from 1 to 5 boosts the average Nusselt number up to 197.09%, highlighting the dominance of radiative thermal transport. The T-shaped baffle significantly influences flow patterns, reduces entropy generation, and optimizes thermal and solutal transport.
利用辐射三杂化纳米流体和t型挡板优化梯形多孔外壳内双扩散对流的熵产
本研究探讨了常用于太阳能系统、电子冷却和化学反应器的梯形多孔外壳的熵产优化和热溶质传递增强。目的是评估辐射三杂化纳米液体对分散在水中的氧化铝、氧化铜和银纳米颗粒填充的梯形多孔腔中传热传质的影响,该多孔腔具有中心位置的t形冷挡板。腔体的下边界被均匀加热和溶解,侧边界被低溶质浓度冷却,上界被绝缘。采用高阶紧凑(HOC)数值格式求解控制方程,重点考虑瑞利数、辐射参数、浮力比和纳米颗粒浓度等参数。结果表明,将瑞利数从104增加到106,可以显著提高传热传质率。不同构型下的平均Nusselt数和Sherwood数分别增加了53.04%和252.49%。此外,将辐射参数值从1提高到5,平均努塞尔数提高到197.09%,突出了辐射热输运的优势。t形挡板显著地影响了流动模式,减少了熵的产生,优化了热输运和溶质输运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信