{"title":"Nitrogen-doped graphene oxide/sodium lignocellulose composites with 3D structure as negative additives for lead-acid batteries","authors":"Senlin Wang, Yi Zhang, Xinru Wang","doi":"10.1002/jccs.70012","DOIUrl":null,"url":null,"abstract":"<p>The hydrogen evolution reaction (HER) and irreversible sulfation of the negative electrode in lead-acid batteries can significantly decrease their service life while operating in the high-rate partial state of charge (HRPSoC) mode. To overcome this challenge, composites with a 3D structure of nitrogen-doped graphene oxide /sodium lignosulfonate composites (GLSN) were synthesized hydrothermally by utilizing graphene oxide (GO), sodium lignosulfonate (LS), and urea as raw materials, and added to the negative active material (NAM) of lead-acid batteries as additives. SEM, XRD, and XPS were utilized to characterize the composites. Meanwhile, the electrochemical properties of the composite electrodes and simulated battery performance were tested. The results established that GLSN composites were composed of a three-dimensional mesoporous structure. The addition of 0.5 weight percent GLSN to NAM effectively suppresses HER, significantly improves the initial discharge specific capacity (182.91 mAh·g<sup>−1</sup>), and prolongs the HRPSoC cycle life (19,552 times) of lead-acid batteries.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 5","pages":"476-487"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.70012","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrogen evolution reaction (HER) and irreversible sulfation of the negative electrode in lead-acid batteries can significantly decrease their service life while operating in the high-rate partial state of charge (HRPSoC) mode. To overcome this challenge, composites with a 3D structure of nitrogen-doped graphene oxide /sodium lignosulfonate composites (GLSN) were synthesized hydrothermally by utilizing graphene oxide (GO), sodium lignosulfonate (LS), and urea as raw materials, and added to the negative active material (NAM) of lead-acid batteries as additives. SEM, XRD, and XPS were utilized to characterize the composites. Meanwhile, the electrochemical properties of the composite electrodes and simulated battery performance were tested. The results established that GLSN composites were composed of a three-dimensional mesoporous structure. The addition of 0.5 weight percent GLSN to NAM effectively suppresses HER, significantly improves the initial discharge specific capacity (182.91 mAh·g−1), and prolongs the HRPSoC cycle life (19,552 times) of lead-acid batteries.
期刊介绍:
The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.