On parametric \(0-\)Gevrey asymptotic expansions in two levels for some linear partial \(q-\)difference-differential equations

IF 1.4 3区 数学 Q1 MATHEMATICS
Alberto Lastra, Stéphane Malek
{"title":"On parametric \\(0-\\)Gevrey asymptotic expansions in two levels for some linear partial \\(q-\\)difference-differential equations","authors":"Alberto Lastra,&nbsp;Stéphane Malek","doi":"10.1007/s13324-025-01074-6","DOIUrl":null,"url":null,"abstract":"<div><p>A novel asymptotic representation of the analytic solutions to a family of singularly perturbed <span>\\(q-\\)</span>difference-differential equations in the complex domain is obtained. Such asymptotic relation shows two different levels associated to the vanishing rate of the domains of the coefficients in the formal asymptotic expansion. On the way, a novel version of a multilevel sequential Ramis-Sibuya type theorem is achieved.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01074-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01074-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A novel asymptotic representation of the analytic solutions to a family of singularly perturbed \(q-\)difference-differential equations in the complex domain is obtained. Such asymptotic relation shows two different levels associated to the vanishing rate of the domains of the coefficients in the formal asymptotic expansion. On the way, a novel version of a multilevel sequential Ramis-Sibuya type theorem is achieved.

一类线性偏微分方程\(q-\)的参数二阶\(0-\) Gevrey渐近展开式
得到了一类奇异摄动\(q-\)微分方程在复域上解析解的一种新的渐近表示。这种渐近关系在形式渐近展开式中显示了与系数域的消失率相关的两个不同层次。在此过程中,得到了一个多层序Ramis-Sibuya型定理的新版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信