Advances in Robust Federated Learning: A Survey With Heterogeneity Considerations

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chuan Chen;Tianchi Liao;Xiaojun Deng;Zihou Wu;Sheng Huang;Zibin Zheng
{"title":"Advances in Robust Federated Learning: A Survey With Heterogeneity Considerations","authors":"Chuan Chen;Tianchi Liao;Xiaojun Deng;Zihou Wu;Sheng Huang;Zibin Zheng","doi":"10.1109/TBDATA.2025.3527202","DOIUrl":null,"url":null,"abstract":"In the field of heterogeneous federated learning (FL), the key challenge is to efficiently and collaboratively train models across multiple clients with different data distributions, model structures, task objectives, computational capabilities, and communication resources. This diversity leads to significant heterogeneity, which increases the complexity of model training. In this paper, we first outline the basic concepts of heterogeneous FL and summarize the research challenges in FL in terms of five aspects: data, model, task, device and communication. In addition, we explore how existing state-of-the-art approaches cope with the heterogeneity of FL, and categorize and review these approaches at three different levels: data-level, model-level, and architecture-level. Subsequently, the paper extensively discusses privacy-preserving strategies in heterogeneous FL environments. Finally, the paper discusses current open issues and directions for future research, aiming to promote the further development of heterogeneous FL.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 3","pages":"1548-1567"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10833754/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of heterogeneous federated learning (FL), the key challenge is to efficiently and collaboratively train models across multiple clients with different data distributions, model structures, task objectives, computational capabilities, and communication resources. This diversity leads to significant heterogeneity, which increases the complexity of model training. In this paper, we first outline the basic concepts of heterogeneous FL and summarize the research challenges in FL in terms of five aspects: data, model, task, device and communication. In addition, we explore how existing state-of-the-art approaches cope with the heterogeneity of FL, and categorize and review these approaches at three different levels: data-level, model-level, and architecture-level. Subsequently, the paper extensively discusses privacy-preserving strategies in heterogeneous FL environments. Finally, the paper discusses current open issues and directions for future research, aiming to promote the further development of heterogeneous FL.
鲁棒联邦学习的研究进展:考虑异质性的综述
在异构联邦学习(FL)领域,关键的挑战是如何跨多个具有不同数据分布、模型结构、任务目标、计算能力和通信资源的客户端高效协作地训练模型。这种多样性导致了显著的异质性,从而增加了模型训练的复杂性。本文首先概述了异构语音识别的基本概念,并从数据、模型、任务、设备和通信五个方面总结了异构语音识别的研究挑战。此外,我们探讨了现有的最先进的方法如何应对FL的异质性,并在三个不同的层次上对这些方法进行了分类和回顾:数据级、模型级和体系结构级。随后,本文广泛讨论了异构FL环境下的隐私保护策略。最后,讨论了当前存在的问题和未来的研究方向,旨在促进异质FL的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信