Study of the Effect of 3D Printing Parameters on the Dielectric Constant in Piezoelectric Polylactic Acid/Barium Titanate Composites via Fused Granular Fabrication
IF 3.4 3区 计算机科学Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"Study of the Effect of 3D Printing Parameters on the Dielectric Constant in Piezoelectric Polylactic Acid/Barium Titanate Composites via Fused Granular Fabrication","authors":"Rodrigo Ruz;Dreidy Vásquez;Rodrigo Ortiz;Francisco Pizarro","doi":"10.1109/ACCESS.2025.3565941","DOIUrl":null,"url":null,"abstract":"This research aims to study the fabrication of electronic devices using pellet extrusion 3D printing with composite material. The process employed a polymer-based composite material that incorporated a substantial amount of barium titanate powder, reaching 80 wt.%. A thorough examination was conducted to understand the various factors influencing the printed components, using a design of experiments (DOE) approach. This method identifies the optimal printing parameters for a Custom Fused Granular Fabrication printer, such as layer height (0.32), barrel temperature (240°C), flow rate (500), and printing speed (2 mm/s). The dielectric constant of the polylactic acid - barium titanate composite reached 8.47 and a loss tangent of 0.099 in the X-band, making it suitable for applications involving high frequencies with a lower cost process and using a more sustainable polymer.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"78959-78967"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10981427","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10981427/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This research aims to study the fabrication of electronic devices using pellet extrusion 3D printing with composite material. The process employed a polymer-based composite material that incorporated a substantial amount of barium titanate powder, reaching 80 wt.%. A thorough examination was conducted to understand the various factors influencing the printed components, using a design of experiments (DOE) approach. This method identifies the optimal printing parameters for a Custom Fused Granular Fabrication printer, such as layer height (0.32), barrel temperature (240°C), flow rate (500), and printing speed (2 mm/s). The dielectric constant of the polylactic acid - barium titanate composite reached 8.47 and a loss tangent of 0.099 in the X-band, making it suitable for applications involving high frequencies with a lower cost process and using a more sustainable polymer.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.