{"title":"Big Data-Driven Advancements and Future Directions in Vehicle Perception Technologies: From Autonomous Driving to Modular Buses","authors":"Hongyi Lin;Yang Liu;Liang Wang;Xiaobo Qu","doi":"10.1109/TBDATA.2025.3527208","DOIUrl":null,"url":null,"abstract":"The rapid development of Big Data and artificial intelligence (AI) is revolutionizing the automotive and transportation industries, leading to the creation of the Autonomous Modular Bus (AMB). Designed to address the key challenges of modern public transportation systems, the AMB adopts a modular dynamic assembly approach. However, existing research on the AMB predominantly focuses on operational aspects, whereas in-transit docking remains the primary obstacle to its commercial deployment. This challenge stems from the fact that current perception accuracy in autonomous vehicles is limited to the decimeter level, with insufficient capability to manage adverse weather and complex traffic conditions. To enable AMBs to achieve full-scenario autonomous driving capabilities, this paper reviews current perception technologies from three perspectives: single-vehicle single-sensor perception, multi-sensor fusion perception, and cooperative perception. It examines the characteristics of existing perception solutions and evaluates their applicability to AMB-specific requirements. Furthermore, considering the unique challenges of in-transit docking, this paper identifies and proposes four future research directions for advancing AMB perception systems as well as general autonomous driving technologies.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 3","pages":"1568-1587"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10833875/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of Big Data and artificial intelligence (AI) is revolutionizing the automotive and transportation industries, leading to the creation of the Autonomous Modular Bus (AMB). Designed to address the key challenges of modern public transportation systems, the AMB adopts a modular dynamic assembly approach. However, existing research on the AMB predominantly focuses on operational aspects, whereas in-transit docking remains the primary obstacle to its commercial deployment. This challenge stems from the fact that current perception accuracy in autonomous vehicles is limited to the decimeter level, with insufficient capability to manage adverse weather and complex traffic conditions. To enable AMBs to achieve full-scenario autonomous driving capabilities, this paper reviews current perception technologies from three perspectives: single-vehicle single-sensor perception, multi-sensor fusion perception, and cooperative perception. It examines the characteristics of existing perception solutions and evaluates their applicability to AMB-specific requirements. Furthermore, considering the unique challenges of in-transit docking, this paper identifies and proposes four future research directions for advancing AMB perception systems as well as general autonomous driving technologies.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.