Leveraging neural networks to optimize heliostat field aiming strategies in Concentrating Solar Power Tower plants

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Antonio Alcántara , Pablo Diaz-Cachinero , Alberto Sánchez-González , Carlos Ruiz
{"title":"Leveraging neural networks to optimize heliostat field aiming strategies in Concentrating Solar Power Tower plants","authors":"Antonio Alcántara ,&nbsp;Pablo Diaz-Cachinero ,&nbsp;Alberto Sánchez-González ,&nbsp;Carlos Ruiz","doi":"10.1016/j.egyai.2025.100520","DOIUrl":null,"url":null,"abstract":"<div><div>Concentrating Solar Power Tower (CSPT) plants rely on heliostat fields to focus sunlight onto a central receiver. Although simple aiming strategies, such as directing all heliostats to the receiver’s equator, can maximize energy collection, they often result in uneven flux distributions that cause hotspots, thermal stresses, and reduced receiver lifetimes. This paper presents a novel, data-driven approach that combines constraint learning, neural network-based surrogates, and mathematical optimization to address these challenges. The methodology learns complex heliostat-to-receiver flux interactions from simulation data and embeds the resulting surrogate model in a tractable optimization framework. By maximizing a tailored quality score that balances energy collection with flux uniformity, the approach produces smoothly distributed flux profiles and mitigates excessive thermal peaks. An iterative refinement process, guided by a trust region strategy and progressive data sampling, ensures continual improvement of the surrogate model by exploring new solution spaces at each iteration. Results from a real CSPT case study show that the proposed approach outperforms conventional heuristic methods, delivering flatter flux distributions with nearly a 10% reduction in peak values and safer thermal conditions (reflected by up to a 50% decrease in deviations from safe concentration distributions), without significantly compromising overall energy capture.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"21 ","pages":"Article 100520"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Concentrating Solar Power Tower (CSPT) plants rely on heliostat fields to focus sunlight onto a central receiver. Although simple aiming strategies, such as directing all heliostats to the receiver’s equator, can maximize energy collection, they often result in uneven flux distributions that cause hotspots, thermal stresses, and reduced receiver lifetimes. This paper presents a novel, data-driven approach that combines constraint learning, neural network-based surrogates, and mathematical optimization to address these challenges. The methodology learns complex heliostat-to-receiver flux interactions from simulation data and embeds the resulting surrogate model in a tractable optimization framework. By maximizing a tailored quality score that balances energy collection with flux uniformity, the approach produces smoothly distributed flux profiles and mitigates excessive thermal peaks. An iterative refinement process, guided by a trust region strategy and progressive data sampling, ensures continual improvement of the surrogate model by exploring new solution spaces at each iteration. Results from a real CSPT case study show that the proposed approach outperforms conventional heuristic methods, delivering flatter flux distributions with nearly a 10% reduction in peak values and safer thermal conditions (reflected by up to a 50% decrease in deviations from safe concentration distributions), without significantly compromising overall energy capture.
利用神经网络优化聚光太阳能塔式电站定日镜瞄准策略
聚光太阳能发电塔(CSPT)依靠定日镜将太阳光聚焦到中央接收器上。虽然简单的瞄准策略,例如将所有定日镜指向接收器的赤道,可以最大限度地收集能量,但它们通常会导致通量分布不均匀,从而导致热点,热应力,并减少接收器的使用寿命。本文提出了一种新颖的、数据驱动的方法,该方法结合了约束学习、基于神经网络的代理和数学优化来解决这些挑战。该方法从仿真数据中学习复杂的定日仪-接收器通量相互作用,并将生成的代理模型嵌入到可处理的优化框架中。通过最大化量身定制的质量分数,平衡能量收集和通量均匀性,该方法产生平滑分布的通量剖面并减轻过多的热峰值。由信任域策略和渐进式数据采样指导的迭代细化过程,通过在每次迭代中探索新的解决方案空间,确保代理模型的持续改进。实际CSPT案例研究的结果表明,所提出的方法优于传统的启发式方法,提供更平坦的通量分布,峰值减少近10%,更安全的热条件(反映在与安全浓度分布的偏差减少高达50%),而不会显著影响总体能量捕获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信