{"title":"Structure of an Unfavorable de Novo DNA Methylation Complex of Plant Methyltransferase ZMET2","authors":"Genevieve Herle , Jian Fang , Jikui Song","doi":"10.1016/j.jmb.2025.169186","DOIUrl":null,"url":null,"abstract":"<div><div>DNA methylation is an important epigenetic mechanism that controls the assembly of heterochromatin and gene expression. In plants, DNA methylation occurs in both CG and non-CG contexts, with non-CG methylation showing notable substrate sequence dependence. The plant DNA methyltransferase CMT3 mediates maintenance of CHG (H = A, C, or T) DNA methylation, with a strong substrate preference for the hemimethylated CWG (W = A, T) motif. Yet, the underlying mechanism remains elusive. Here we present a crystal structure of ZMET2, the CMT3 ortholog from <em>Zea mays</em> (maize), in complex with a DNA substrate containing an unmethylated CTG motif and a histone peptide carrying a mimic of the histone H3K9me2 modification. Structural comparison of the ZMET2-CTG complex with the previously reported structure of ZMET2 bound to hemimethylated CAG DNA reveals similar but distinct protein-DNA interactions centered on the CWG motif, providing insight into the methylation state- and substrate sequence-specific ZMET2/CMT3-substrate interaction. Furthermore, our combined structural and biochemical analysis reveals a role for the +3-flanking base of the target cytosine in fine-tuning ZMET2-mediated DNA methylation and its functional interplay with the +1- and +2-flanking sites. Together, these results provide deep mechanistic insights into the substrate specificity of CMT3 DNA methyltransferases in plants.</div></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"437 17","pages":"Article 169186"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283625002529","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA methylation is an important epigenetic mechanism that controls the assembly of heterochromatin and gene expression. In plants, DNA methylation occurs in both CG and non-CG contexts, with non-CG methylation showing notable substrate sequence dependence. The plant DNA methyltransferase CMT3 mediates maintenance of CHG (H = A, C, or T) DNA methylation, with a strong substrate preference for the hemimethylated CWG (W = A, T) motif. Yet, the underlying mechanism remains elusive. Here we present a crystal structure of ZMET2, the CMT3 ortholog from Zea mays (maize), in complex with a DNA substrate containing an unmethylated CTG motif and a histone peptide carrying a mimic of the histone H3K9me2 modification. Structural comparison of the ZMET2-CTG complex with the previously reported structure of ZMET2 bound to hemimethylated CAG DNA reveals similar but distinct protein-DNA interactions centered on the CWG motif, providing insight into the methylation state- and substrate sequence-specific ZMET2/CMT3-substrate interaction. Furthermore, our combined structural and biochemical analysis reveals a role for the +3-flanking base of the target cytosine in fine-tuning ZMET2-mediated DNA methylation and its functional interplay with the +1- and +2-flanking sites. Together, these results provide deep mechanistic insights into the substrate specificity of CMT3 DNA methyltransferases in plants.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.