Advanced THz metasurface biosensor for label-free amino acid detection optimized with stacking ensemble algorithm

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Jacob Wekalao , Ahmed Mehaney , Nassir Saad Alarifi , Mostafa R. Abukhadra , Hussein A. Elsayed , Amuthakkannan Rajakannu
{"title":"Advanced THz metasurface biosensor for label-free amino acid detection optimized with stacking ensemble algorithm","authors":"Jacob Wekalao ,&nbsp;Ahmed Mehaney ,&nbsp;Nassir Saad Alarifi ,&nbsp;Mostafa R. Abukhadra ,&nbsp;Hussein A. Elsayed ,&nbsp;Amuthakkannan Rajakannu","doi":"10.1016/j.physe.2025.116287","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an advanced terahertz metasurface biosensor platform for real-time, label-free detection of amino acids. The biosensor incorporates F-shaped resonator design utilizing a hybrid material composition of graphene, gold, and silver on a silicon dioxide substrate. Computational modelling via COMSOL Multiphysics demonstrates exceptional sensitivity metrics of up to 1000 GHz/RIU and a figure of merit (FOM) of 33.333 RIU<sup>−1</sup> within the 0.1THz–0.6 THz frequency range. Systematic parametric optimization, including variations in graphene chemical potential (0.1eV–0.9 eV), incident angle (0°–80°), and resonator dimensions, ensures robust detection performance across diverse operational conditions. The biosensing capabilities are further enhanced through implementation of a stacking ensemble machine learning model, which achieves optimal prediction accuracy with an R<sup>2</sup> score of 100 % across multiple parameters. The proposed biosensor operates on physical transduction principles, detecting amino acids through resonance frequency shifts corresponding to local refractive index variations, eliminating the need for biochemical tags, enzymes, or antibody-based recognition elements. With its exceptional sensitivity, tunable design parameters, and compatibility with scalable fabrication techniques, the proposed biosensor design represents a significant advancement with potential applications spanning biomedical diagnostics, environmental monitoring, and food safety assessment. The integration of advanced machine learning frameworks further positions this technology as a promising platform for next-generation biomolecular sensing.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"172 ","pages":"Article 116287"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001171","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an advanced terahertz metasurface biosensor platform for real-time, label-free detection of amino acids. The biosensor incorporates F-shaped resonator design utilizing a hybrid material composition of graphene, gold, and silver on a silicon dioxide substrate. Computational modelling via COMSOL Multiphysics demonstrates exceptional sensitivity metrics of up to 1000 GHz/RIU and a figure of merit (FOM) of 33.333 RIU−1 within the 0.1THz–0.6 THz frequency range. Systematic parametric optimization, including variations in graphene chemical potential (0.1eV–0.9 eV), incident angle (0°–80°), and resonator dimensions, ensures robust detection performance across diverse operational conditions. The biosensing capabilities are further enhanced through implementation of a stacking ensemble machine learning model, which achieves optimal prediction accuracy with an R2 score of 100 % across multiple parameters. The proposed biosensor operates on physical transduction principles, detecting amino acids through resonance frequency shifts corresponding to local refractive index variations, eliminating the need for biochemical tags, enzymes, or antibody-based recognition elements. With its exceptional sensitivity, tunable design parameters, and compatibility with scalable fabrication techniques, the proposed biosensor design represents a significant advancement with potential applications spanning biomedical diagnostics, environmental monitoring, and food safety assessment. The integration of advanced machine learning frameworks further positions this technology as a promising platform for next-generation biomolecular sensing.
基于堆叠集成算法优化的先进太赫兹超表面氨基酸检测传感器
本文提出了一种先进的太赫兹超表面生物传感器平台,用于实时,无标记检测氨基酸。该生物传感器采用f形谐振器设计,利用石墨烯、金和银在二氧化硅衬底上的混合材料组成。通过COMSOL Multiphysics进行的计算建模表明,在0.1THz-0.6 THz频率范围内,灵敏度指标高达1000 GHz/RIU,性能值(FOM)为33.333 RIU−1。系统的参数优化,包括石墨烯化学势(0.1eV-0.9 eV)、入射角(0°-80°)和谐振器尺寸的变化,确保了在不同操作条件下的稳健检测性能。通过实现堆叠集成机器学习模型,生物传感能力进一步增强,该模型在多个参数中实现了最佳预测精度,R2分数为100%。该生物传感器基于物理转导原理,通过与局部折射率变化相对应的共振频率位移来检测氨基酸,从而消除了对生化标签、酶或基于抗体的识别元件的需求。凭借其卓越的灵敏度、可调的设计参数和可扩展制造技术的兼容性,所提出的生物传感器设计代表了生物医学诊断、环境监测和食品安全评估等潜在应用领域的重大进步。先进机器学习框架的集成进一步将该技术定位为下一代生物分子传感的有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信