Fast cortical thickness estimation using deep learning-based anatomy segmentation and diffeomorphic registration

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Jiong Wu , Shuang Zhou
{"title":"Fast cortical thickness estimation using deep learning-based anatomy segmentation and diffeomorphic registration","authors":"Jiong Wu ,&nbsp;Shuang Zhou","doi":"10.1016/j.compmedimag.2025.102569","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately and efficiently estimating the cortical thickness from magnetic resonance images (MRIs) is crucial for neuroscientific studies and clinical applications with various large-scale datasets. Diffeomorphic registration-based cortical thickness estimation (DiReCT) is a prominent traditional method of calculating such measures directly from original MRIs by applying diffeomorphic registration on segmented tissues. However, it suffers from prolonged computational time and limited reproducibility, impediments to its application in large-scale studies or real-time environments. This paper proposes a framework for cortical thickness estimation using deep learning-based anatomy segmentation and diffeomorphic registration. The framework begins by applying a convolutional neural network (CNN) segmentation model to the original image, generating a segmentation map that accurately delineates the cortical boundaries. Subsequently, a pair of distance maps generated from the segmentation map is injected into an unsupervised learning-based registration network for fast and diffeomorphic registration. A novel algorithm based on diffeomorphisms of different time points is proposed to calculate the final thickness map. We systematically evaluated and compared our method with surface-based measures from FreeSurfer on two distinct datasets. The experimental results demonstrated a superior performance of the proposed method, surpassing the performance of DiReCT and DL+DiReCT in terms of time efficiency and consistency with FreeSurfer. Our code and pre-trained models are publicly available at: <span><span>https://github.com/wujiong-hub/DL-CTE.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"123 ","pages":"Article 102569"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000783","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately and efficiently estimating the cortical thickness from magnetic resonance images (MRIs) is crucial for neuroscientific studies and clinical applications with various large-scale datasets. Diffeomorphic registration-based cortical thickness estimation (DiReCT) is a prominent traditional method of calculating such measures directly from original MRIs by applying diffeomorphic registration on segmented tissues. However, it suffers from prolonged computational time and limited reproducibility, impediments to its application in large-scale studies or real-time environments. This paper proposes a framework for cortical thickness estimation using deep learning-based anatomy segmentation and diffeomorphic registration. The framework begins by applying a convolutional neural network (CNN) segmentation model to the original image, generating a segmentation map that accurately delineates the cortical boundaries. Subsequently, a pair of distance maps generated from the segmentation map is injected into an unsupervised learning-based registration network for fast and diffeomorphic registration. A novel algorithm based on diffeomorphisms of different time points is proposed to calculate the final thickness map. We systematically evaluated and compared our method with surface-based measures from FreeSurfer on two distinct datasets. The experimental results demonstrated a superior performance of the proposed method, surpassing the performance of DiReCT and DL+DiReCT in terms of time efficiency and consistency with FreeSurfer. Our code and pre-trained models are publicly available at: https://github.com/wujiong-hub/DL-CTE.git.
基于深度学习的解剖分割和差胚配准快速皮质厚度估计
从磁共振图像(mri)中准确有效地估计皮层厚度对于神经科学研究和各种大规模数据集的临床应用至关重要。基于差形配准的皮质厚度估计(DiReCT)是一种突出的传统方法,通过对分割的组织进行差形配准,直接从原始mri中计算皮质厚度。然而,它的计算时间长,可重复性有限,阻碍了其在大规模研究或实时环境中的应用。本文提出了一种基于深度学习的解剖分割和差胚配准的皮质厚度估计框架。该框架首先对原始图像应用卷积神经网络(CNN)分割模型,生成准确描绘皮层边界的分割图。然后,将分割图生成的一对距离图注入到基于无监督学习的配准网络中,实现快速微分同构配准。提出了一种基于不同时间点的差分同态来计算最终厚度图的新算法。在两个不同的数据集上,我们系统地评估并比较了我们的方法与FreeSurfer基于表面的测量方法。实验结果表明,该方法在时间效率和与FreeSurfer的一致性方面优于DiReCT和DL+DiReCT。我们的代码和预训练模型可以在:https://github.com/wujiong-hub/DL-CTE.git上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信