CALIMAR-GAN: An unpaired mask-guided attention network for metal artifact reduction in CT scans

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Roberto Maria Scardigno, Antonio Brunetti, Pietro Maria Marvulli, Raffaele Carli, Mariagrazia Dotoli, Vitoantonio Bevilacqua, Domenico Buongiorno
{"title":"CALIMAR-GAN: An unpaired mask-guided attention network for metal artifact reduction in CT scans","authors":"Roberto Maria Scardigno,&nbsp;Antonio Brunetti,&nbsp;Pietro Maria Marvulli,&nbsp;Raffaele Carli,&nbsp;Mariagrazia Dotoli,&nbsp;Vitoantonio Bevilacqua,&nbsp;Domenico Buongiorno","doi":"10.1016/j.compmedimag.2025.102565","DOIUrl":null,"url":null,"abstract":"<div><div>High-quality computed tomography (CT) scans are essential for accurate diagnostic and therapeutic decisions, but the presence of metal objects within the body can produce distortions that lower image quality. Deep learning (DL) approaches using image-to-image translation for metal artifact reduction (MAR) show promise over traditional methods but often introduce secondary artifacts. Additionally, most rely on paired simulated data due to limited availability of real paired clinical data, restricting evaluation on clinical scans to qualitative analysis. This work presents CALIMAR-GAN, a generative adversarial network (GAN) model that employs a guided attention mechanism and the linear interpolation algorithm to reduce artifacts using unpaired simulated and clinical data for targeted artifact reduction. Quantitative evaluations on simulated images demonstrated superior performance, achieving a PSNR of 31.7, SSIM of 0.877, and Fréchet inception distance (FID) of 22.1, outperforming state-of-the-art methods. On real clinical images, CALIMAR-GAN achieved the lowest FID (32.7), validated as a valuable complement to qualitative assessments through correlation with pixel-based metrics (<span><math><mrow><mi>r</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>797</mn></mrow></math></span> with PSNR, <span><math><mrow><mi>p</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>01</mn></mrow></math></span>; <span><math><mrow><mi>r</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>767</mn></mrow></math></span> with MS-SSIM, <span><math><mrow><mi>p</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>01</mn></mrow></math></span>). This work advances DL-based artifact reduction into clinical practice with high-fidelity reconstructions that enhance diagnostic accuracy and therapeutic outcomes. Code is available at <span><span>https://github.com/roberto722/calimar-gan</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"123 ","pages":"Article 102565"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000746","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-quality computed tomography (CT) scans are essential for accurate diagnostic and therapeutic decisions, but the presence of metal objects within the body can produce distortions that lower image quality. Deep learning (DL) approaches using image-to-image translation for metal artifact reduction (MAR) show promise over traditional methods but often introduce secondary artifacts. Additionally, most rely on paired simulated data due to limited availability of real paired clinical data, restricting evaluation on clinical scans to qualitative analysis. This work presents CALIMAR-GAN, a generative adversarial network (GAN) model that employs a guided attention mechanism and the linear interpolation algorithm to reduce artifacts using unpaired simulated and clinical data for targeted artifact reduction. Quantitative evaluations on simulated images demonstrated superior performance, achieving a PSNR of 31.7, SSIM of 0.877, and Fréchet inception distance (FID) of 22.1, outperforming state-of-the-art methods. On real clinical images, CALIMAR-GAN achieved the lowest FID (32.7), validated as a valuable complement to qualitative assessments through correlation with pixel-based metrics (r=0.797 with PSNR, p<0.01; r=0.767 with MS-SSIM, p<0.01). This work advances DL-based artifact reduction into clinical practice with high-fidelity reconstructions that enhance diagnostic accuracy and therapeutic outcomes. Code is available at https://github.com/roberto722/calimar-gan.
CALIMAR-GAN:一种用于减少CT扫描中金属伪影的非配对掩模引导注意网络
高质量的计算机断层扫描(CT)对于准确的诊断和治疗决策至关重要,但体内金属物体的存在会产生畸变,从而降低图像质量。深度学习(DL)方法使用图像到图像的转换来减少金属伪影(MAR),比传统方法更有希望,但通常会引入次要伪影。此外,由于实际配对临床数据的可用性有限,大多数依赖于配对模拟数据,将临床扫描的评估限制在定性分析上。这项工作提出了CALIMAR-GAN,一种生成式对抗网络(GAN)模型,该模型采用引导注意力机制和线性插值算法,使用未配对的模拟和临床数据来减少伪像,以减少目标伪像。对模拟图像的定量评价显示了优越的性能,实现了31.7的PSNR, 0.877的SSIM和22.1的fr起始距离(FID),优于最先进的方法。在真实的临床图像中,CALIMAR-GAN获得了最低的FID(32.7),通过与基于像素的指标的相关性(r= - 0.797, PSNR, p<0.01;MS-SSIM r=−0.767,p<0.01)。这项工作通过高保真重建将基于dl的伪影减少应用于临床实践,提高了诊断准确性和治疗效果。代码可从https://github.com/roberto722/calimar-gan获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信