Numerical solution and errors analysis of iterative method for a nonlinear plate bending problem

IF 1.4 Q2 MATHEMATICS, APPLIED
Akakpo Amoussou Wilfried , Houédanou Koffi Wilfrid
{"title":"Numerical solution and errors analysis of iterative method for a nonlinear plate bending problem","authors":"Akakpo Amoussou Wilfried ,&nbsp;Houédanou Koffi Wilfrid","doi":"10.1016/j.rinam.2025.100576","DOIUrl":null,"url":null,"abstract":"<div><div>This paper uses the HCT finite element method and mesh adaptation technology to solve the nonlinear plate bending problem and conducts error analysis on the iterative method, including a priori and a posteriori error estimates. Our investigation exploits Hermite finite elements such as BELL and HSIEH-CLOUGH-TOCHER (HCT) triangles for conforming finite element discretization. We use an iterative resolution algorithm to linearize the associated discrete problem and study the convergence of this algorithm towards the solution of the approximate problem. An optimal a priori error estimation has been established. We construct a posteriori error indicators by distinguishing between discretization and linearization errors and prove their reliability and optimality. A numerical test is carried out and the results obtained confirm those established theoretically.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100576"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper uses the HCT finite element method and mesh adaptation technology to solve the nonlinear plate bending problem and conducts error analysis on the iterative method, including a priori and a posteriori error estimates. Our investigation exploits Hermite finite elements such as BELL and HSIEH-CLOUGH-TOCHER (HCT) triangles for conforming finite element discretization. We use an iterative resolution algorithm to linearize the associated discrete problem and study the convergence of this algorithm towards the solution of the approximate problem. An optimal a priori error estimation has been established. We construct a posteriori error indicators by distinguishing between discretization and linearization errors and prove their reliability and optimality. A numerical test is carried out and the results obtained confirm those established theoretically.
非线性板弯曲问题迭代法的数值解及误差分析
本文采用HCT有限元法和网格自适应技术求解非线性板弯曲问题,并对迭代法进行误差分析,包括先验误差估计和后验误差估计。我们的研究利用Hermite有限元如BELL和HSIEH-CLOUGH-TOCHER (HCT)三角形进行一致性有限元离散化。我们使用迭代求解算法对相关的离散问题进行线性化,并研究了该算法对近似问题解的收敛性。建立了最优先验误差估计。通过对离散化误差和线性化误差的区分,构造了一个后验误差指标,并证明了其可靠性和最优性。进行了数值试验,得到的结果与理论结论一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信