Fractal characteristics of interfaces in Richtmyer–Meshkov turbulence

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Yue Zhang , Zhangbo Zhou , Wan Cheng , Juchun Ding , Xisheng Luo
{"title":"Fractal characteristics of interfaces in Richtmyer–Meshkov turbulence","authors":"Yue Zhang ,&nbsp;Zhangbo Zhou ,&nbsp;Wan Cheng ,&nbsp;Juchun Ding ,&nbsp;Xisheng Luo","doi":"10.1016/j.physd.2025.134711","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates the fractal dimension of the spike front and the bubble front in Richtmyer–Meshkov (RM) turbulence with initial broadband and narrowband perturbations. The fractal dimension <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> of interfaces is found to be intimately associated with interfacial mixing, exhibiting a gradual increase with interface evolution until it attains a stable value, between <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>≈</mo><mn>2</mn><mo>.</mo><mn>2</mn><mo>∼</mo><mn>2</mn><mo>.</mo><mn>33</mn></mrow></math></span>, upon entering the self-similar stage. The fractal dimension on the spike front is closer to the universal fractal dimension of fully-developed turbulence, indicating stronger turbulent fluctuations there. Large-scale perturbations render the interfaces more two-dimensional thereby resulting in a lower fractal dimension. The results demonstrate that the fractal dimension, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>f</mi><mn>3</mn></mrow></msub></math></span>, of a surface in three dimensions can be faithfully reflected by the fractal dimension, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>f</mi><mn>2</mn></mrow></msub></math></span>, of the interface of its two-dimensional projection. This finding validates the additive rule of <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>f</mi><mn>3</mn></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>f</mi><mn>2</mn></mrow></msub><mo>+</mo><mn>1</mn></mrow></math></span> in RM turbulence, which is of considerable utility for experimental research. The filtering approach is furthermore employed to illustrate the scale-invariance of the fractal interfaces. The fractal features of the early spike and bubble interfaces can be described by a simple model fractal of the Koch curve, with distinct scale factors.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"477 ","pages":"Article 134711"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001885","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the fractal dimension of the spike front and the bubble front in Richtmyer–Meshkov (RM) turbulence with initial broadband and narrowband perturbations. The fractal dimension Df of interfaces is found to be intimately associated with interfacial mixing, exhibiting a gradual increase with interface evolution until it attains a stable value, between Df2.22.33, upon entering the self-similar stage. The fractal dimension on the spike front is closer to the universal fractal dimension of fully-developed turbulence, indicating stronger turbulent fluctuations there. Large-scale perturbations render the interfaces more two-dimensional thereby resulting in a lower fractal dimension. The results demonstrate that the fractal dimension, Df3, of a surface in three dimensions can be faithfully reflected by the fractal dimension, Df2, of the interface of its two-dimensional projection. This finding validates the additive rule of Df3=Df2+1 in RM turbulence, which is of considerable utility for experimental research. The filtering approach is furthermore employed to illustrate the scale-invariance of the fractal interfaces. The fractal features of the early spike and bubble interfaces can be described by a simple model fractal of the Koch curve, with distinct scale factors.
richmyer - meshkov湍流中界面的分形特征
本文研究了具有初始宽带和窄带扰动的richhtmyer - meshkov (RM)湍流中尖峰锋和气泡锋的分形维数。界面的分形维数Df与界面混合密切相关,随着界面的演化逐渐增加,直到进入自相似阶段时达到稳定值Df≈2.2 ~ 2.33。尖峰锋面的分形维数更接近于完全发育湍流的通用分形维数,表明那里的湍流波动更强。大规模的扰动使界面更加二维化,从而导致较低的分形维数。结果表明,曲面二维投影界面的分形维数Df2可以忠实地反映三维曲面的分形维数Df3。这一发现验证了RM湍流中Df3=Df2+1的加性规律,对实验研究具有重要的实用价值。采用滤波方法进一步说明了分形界面的尺度不变性。早期尖泡界面的分形特征可以用具有明显尺度因子的Koch曲线的简单分形模型来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信