{"title":"A comparative study of machine learning and deep learning models in binary and multiclass classification for intrusion detection systems","authors":"Ayesha Alharthi, Meera Alaryani, Sanaa Kaddoura","doi":"10.1016/j.array.2025.100406","DOIUrl":null,"url":null,"abstract":"<div><div>Network infrastructure evolution has significantly expanded the attack surface, leading to increasingly complex and sophisticated cybersecurity threats. Traditional rule-based intrusion detection systems (IDS) often fail to detect emerging attack vectors, prompting the need for intelligent, data-driven approaches. This study evaluates and compares the performance of machine learning (ML) and deep learning (DL) models for network intrusion detection. Two publicly available datasets were utilized: a binary-labeled software-defined networking (SDN) dataset and a multiclass industrial control system dataset based on the IEC 60870-5-104 protocol. Preprocessing steps included normalization, label encoding, and a 70:10:20 train-validation-test split. Seven models, Random Forest, Decision Tree, K-Nearest Neighbors, XGBoost, Convolutional Neural Network, Gated Recurrent Unit, and Long Short-Term Memory, were trained and evaluated using precision, recall, and F1-score. The Random Forest model achieved the highest F1-score of 93.57 % on the IEC 60870-5-104 dataset, while XGBoost attained a near-perfect F1-score of 99.97 % on the SDN dataset. These results outperform comparable models in the literature and offer practical insights for selecting effective IDS solutions based on classification type and dataset structure.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"26 ","pages":"Article 100406"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625000335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Network infrastructure evolution has significantly expanded the attack surface, leading to increasingly complex and sophisticated cybersecurity threats. Traditional rule-based intrusion detection systems (IDS) often fail to detect emerging attack vectors, prompting the need for intelligent, data-driven approaches. This study evaluates and compares the performance of machine learning (ML) and deep learning (DL) models for network intrusion detection. Two publicly available datasets were utilized: a binary-labeled software-defined networking (SDN) dataset and a multiclass industrial control system dataset based on the IEC 60870-5-104 protocol. Preprocessing steps included normalization, label encoding, and a 70:10:20 train-validation-test split. Seven models, Random Forest, Decision Tree, K-Nearest Neighbors, XGBoost, Convolutional Neural Network, Gated Recurrent Unit, and Long Short-Term Memory, were trained and evaluated using precision, recall, and F1-score. The Random Forest model achieved the highest F1-score of 93.57 % on the IEC 60870-5-104 dataset, while XGBoost attained a near-perfect F1-score of 99.97 % on the SDN dataset. These results outperform comparable models in the literature and offer practical insights for selecting effective IDS solutions based on classification type and dataset structure.