Generative AI in cybersecurity: A comprehensive review of LLM applications and vulnerabilities

Mohamed Amine Ferrag , Fatima Alwahedi , Ammar Battah , Bilel Cherif , Abdechakour Mechri , Norbert Tihanyi , Tamas Bisztray , Merouane Debbah
{"title":"Generative AI in cybersecurity: A comprehensive review of LLM applications and vulnerabilities","authors":"Mohamed Amine Ferrag ,&nbsp;Fatima Alwahedi ,&nbsp;Ammar Battah ,&nbsp;Bilel Cherif ,&nbsp;Abdechakour Mechri ,&nbsp;Norbert Tihanyi ,&nbsp;Tamas Bisztray ,&nbsp;Merouane Debbah","doi":"10.1016/j.iotcps.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs). We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection. We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA. Our analysis extends to LLM vulnerabilities, such as prompt injection, insecure output handling, data poisoning, DDoS attacks, and adversarial instructions. We delve into mitigation strategies to protect these models, providing a comprehensive look at potential attack scenarios and prevention techniques. Furthermore, we evaluate the performance of 42 LLM models in cybersecurity knowledge and hardware security, highlighting their strengths and weaknesses. We thoroughly evaluate cybersecurity datasets for LLM training and testing, covering the lifecycle from data creation to usage and identifying gaps for future research. In addition, we review new strategies for leveraging LLMs, including techniques like Half-Quadratic Quantization (HQQ), Reinforcement Learning with Human Feedback (RLHF), Direct Preference Optimization (DPO), Quantized Low-Rank Adapters (QLoRA), and Retrieval-Augmented Generation (RAG). These insights aim to enhance real-time cybersecurity defenses and improve the sophistication of LLM applications in threat detection and response. Our paper provides a foundational understanding and strategic direction for integrating LLMs into future cybersecurity frameworks, emphasizing innovation and robust model deployment to safeguard against evolving cyber threats.</div></div>","PeriodicalId":100724,"journal":{"name":"Internet of Things and Cyber-Physical Systems","volume":"5 ","pages":"Pages 1-46"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things and Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667345225000082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs). We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection. We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA. Our analysis extends to LLM vulnerabilities, such as prompt injection, insecure output handling, data poisoning, DDoS attacks, and adversarial instructions. We delve into mitigation strategies to protect these models, providing a comprehensive look at potential attack scenarios and prevention techniques. Furthermore, we evaluate the performance of 42 LLM models in cybersecurity knowledge and hardware security, highlighting their strengths and weaknesses. We thoroughly evaluate cybersecurity datasets for LLM training and testing, covering the lifecycle from data creation to usage and identifying gaps for future research. In addition, we review new strategies for leveraging LLMs, including techniques like Half-Quadratic Quantization (HQQ), Reinforcement Learning with Human Feedback (RLHF), Direct Preference Optimization (DPO), Quantized Low-Rank Adapters (QLoRA), and Retrieval-Augmented Generation (RAG). These insights aim to enhance real-time cybersecurity defenses and improve the sophistication of LLM applications in threat detection and response. Our paper provides a foundational understanding and strategic direction for integrating LLMs into future cybersecurity frameworks, emphasizing innovation and robust model deployment to safeguard against evolving cyber threats.
网络安全中的生成人工智能:法学硕士应用程序和漏洞的全面审查
本文通过生成式人工智能和大型语言模型(llm)对网络安全的未来进行了全面的回顾。我们探索法学硕士在各个领域的应用,包括硬件设计安全、入侵检测、软件工程、设计验证、网络威胁情报、恶意软件检测和网络钓鱼检测。我们概述了LLM的发展及其当前状态,重点介绍了GPT-4、GPT-3.5、Mixtral-8x7B、BERT、Falcon2和LLaMA等模型的进展。我们的分析扩展到LLM漏洞,例如提示注入、不安全的输出处理、数据中毒、DDoS攻击和对抗性指令。我们深入研究了保护这些模型的缓解策略,全面介绍了潜在的攻击场景和预防技术。此外,我们评估了42个LLM模型在网络安全知识和硬件安全方面的性能,突出了它们的优缺点。我们全面评估了LLM培训和测试的网络安全数据集,涵盖了从数据创建到使用的生命周期,并确定了未来研究的差距。此外,我们回顾了利用llm的新策略,包括半二次量化(HQQ)、人类反馈强化学习(RLHF)、直接偏好优化(DPO)、量化低秩适配器(QLoRA)和检索增强生成(RAG)等技术。这些见解旨在增强实时网络安全防御,提高LLM应用程序在威胁检测和响应方面的复杂性。我们的论文为将法学硕士整合到未来的网络安全框架中提供了基本的理解和战略方向,强调了创新和强大的模型部署,以抵御不断变化的网络威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信