Efficient deterministic algorithms for maximizing symmetric submodular functions

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Zongqi Wan , Jialin Zhang , Xiaoming Sun , Zhijie Zhang
{"title":"Efficient deterministic algorithms for maximizing symmetric submodular functions","authors":"Zongqi Wan ,&nbsp;Jialin Zhang ,&nbsp;Xiaoming Sun ,&nbsp;Zhijie Zhang","doi":"10.1016/j.tcs.2025.115312","DOIUrl":null,"url":null,"abstract":"<div><div>Symmetric submodular maximization is an important class of combinatorial optimization problems, including MAX-CUT on graphs and hyper-graphs. The state-of-the-art algorithm for the problem over general constraints has an approximation ratio of 0.432 <span><span>[16]</span></span>. The algorithm applies the canonical continuous greedy technique that involves a sampling process. It, therefore, suffers from high query complexity and is inherently randomized. In this paper, we present several efficient deterministic algorithms for maximizing a symmetric submodular function under various constraints. Specifically, for the cardinality constraint, we design a deterministic algorithm that attains a 0.432 ratio and uses <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>n</mi><mo>)</mo></math></span> queries. Previously, the best deterministic algorithm attains a <span><math><mn>0.385</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio and uses <span><math><mi>O</mi><mrow><mo>(</mo><mi>k</mi><mi>n</mi><msup><mrow><mo>(</mo><mfrac><mrow><mn>10</mn></mrow><mrow><mn>9</mn><mi>ϵ</mi></mrow></mfrac><mo>)</mo></mrow><mrow><mfrac><mrow><mn>20</mn></mrow><mrow><mn>9</mn><mi>ϵ</mi></mrow></mfrac><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></math></span> queries <span><span>[12]</span></span>. For the matroid constraint, we design a deterministic algorithm that attains a <span><math><mn>1</mn><mo>/</mo><mn>3</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio and uses <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>n</mi><mi>log</mi><mo>⁡</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> queries. Previously, the best deterministic algorithm can also attain <span><math><mn>1</mn><mo>/</mo><mn>3</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio but it uses much larger <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></math></span> queries <span><span>[24]</span></span>. For the packing constraints with a large width, we design a deterministic algorithm that attains a <span><math><mn>0.432</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio and uses <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> queries. To the best of our knowledge, there is no deterministic algorithm for the constraint previously. The last algorithm can be adapted to attain a 0.432 ratio for single knapsack constraint using <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></math></span> queries. Previously, the best deterministic algorithm attains a <span><math><mn>0.316</mn><mo>−</mo><mi>ϵ</mi></math></span> ratio and uses <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> queries <span><span>[2]</span></span>.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1046 ","pages":"Article 115312"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525002506","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Symmetric submodular maximization is an important class of combinatorial optimization problems, including MAX-CUT on graphs and hyper-graphs. The state-of-the-art algorithm for the problem over general constraints has an approximation ratio of 0.432 [16]. The algorithm applies the canonical continuous greedy technique that involves a sampling process. It, therefore, suffers from high query complexity and is inherently randomized. In this paper, we present several efficient deterministic algorithms for maximizing a symmetric submodular function under various constraints. Specifically, for the cardinality constraint, we design a deterministic algorithm that attains a 0.432 ratio and uses O(kn) queries. Previously, the best deterministic algorithm attains a 0.385ϵ ratio and uses O(kn(109ϵ)209ϵ1) queries [12]. For the matroid constraint, we design a deterministic algorithm that attains a 1/3ϵ ratio and uses O(knlogϵ1) queries. Previously, the best deterministic algorithm can also attain 1/3ϵ ratio but it uses much larger O(ϵ1n4) queries [24]. For the packing constraints with a large width, we design a deterministic algorithm that attains a 0.432ϵ ratio and uses O(n2) queries. To the best of our knowledge, there is no deterministic algorithm for the constraint previously. The last algorithm can be adapted to attain a 0.432 ratio for single knapsack constraint using O(n4) queries. Previously, the best deterministic algorithm attains a 0.316ϵ ratio and uses O˜(n3) queries [2].
对称子模函数最大化的高效确定性算法
对称次模最大化是一类重要的组合优化问题,包括图和超图上的MAX-CUT问题。对于一般约束下的问题,最先进的算法的近似比为0.432[16]。该算法采用了典型的连续贪婪技术,该技术涉及一个采样过程。因此,它的查询复杂度很高,而且天生就是随机的。在本文中,我们提出了几种有效的确定性算法,用于在各种约束下最大化对称子模函数。具体来说,对于基数约束,我们设计了一个确定性算法,该算法达到0.432比率并使用O(kn)查询。以前,最好的确定性算法达到0.385 - λ比,并使用O(kn(109λ) 209λ−1)查询[12]。对于矩阵约束,我们设计了一种确定性算法,该算法获得了1/3−ε比,并使用了O(knlog δ ε−1)查询。以前,最好的确定性算法也可以达到1/3−λ比,但它使用更大的O(λ−1n4)查询[24]。对于具有大宽度的包装约束,我们设计了一个确定性算法,该算法达到0.432−ε比,并使用O(n2)查询。据我们所知,之前的约束没有确定性的算法。最后一种算法可以使用O(n4)个查询来实现单个背包约束的0.432比率。以前,最好的确定性算法达到0.316−ε比,并使用O ~ (n3)查询[2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信