{"title":"A combinatorial approach to avoiding weak keys in the BIKE cryptosystem","authors":"Gretchen L. Matthews, Emily McMillon","doi":"10.1007/s10623-025-01643-7","DOIUrl":null,"url":null,"abstract":"<p>Bit Flipping Key Encapsulation (BIKE) is a code-based cryptosystem that was considered in Round 4 of the NIST Post-Quantum Cryptography Standardization process. It is based on quasi-cyclic moderate-density parity-check (QC-MDPC) codes paired with an iterative decoder. While (low-density) parity-check codes have been shown to perform well in practice, their capabilities are governed by the code’s graphical representation and the choice of decoder rather than the traditional code parameters, making it difficult to determine the decoder failure rate (DFR). Moreover, decoding failures have been demonstrated to lead to attacks that recover the BIKE private key. In this paper, we demonstrate a strong correlation between weak keys and 4-cycles in their associated Tanner graphs. We give concrete ways to enumerate the number of 4-cycles in a BIKE key and use these results to present a filtering algorithm that will filter BIKE keys with large numbers of 4-cycles. These results also apply to more general parity check codes.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"52 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-025-01643-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Bit Flipping Key Encapsulation (BIKE) is a code-based cryptosystem that was considered in Round 4 of the NIST Post-Quantum Cryptography Standardization process. It is based on quasi-cyclic moderate-density parity-check (QC-MDPC) codes paired with an iterative decoder. While (low-density) parity-check codes have been shown to perform well in practice, their capabilities are governed by the code’s graphical representation and the choice of decoder rather than the traditional code parameters, making it difficult to determine the decoder failure rate (DFR). Moreover, decoding failures have been demonstrated to lead to attacks that recover the BIKE private key. In this paper, we demonstrate a strong correlation between weak keys and 4-cycles in their associated Tanner graphs. We give concrete ways to enumerate the number of 4-cycles in a BIKE key and use these results to present a filtering algorithm that will filter BIKE keys with large numbers of 4-cycles. These results also apply to more general parity check codes.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.