Dennis Maseizik, Sagnik Mondal, Hyeonseok Seong and Günter Sigl
{"title":"Radio lines from accreting axion stars","authors":"Dennis Maseizik, Sagnik Mondal, Hyeonseok Seong and Günter Sigl","doi":"10.1088/1475-7516/2025/05/033","DOIUrl":null,"url":null,"abstract":"Axion-like particles, which we call axions, can compose the missing dark matter and may form substructures such as miniclusters and axion stars. We obtain the mass distributions of axion stars derived from their host miniclusters in our galaxy and find a significant number of axion stars reaching the decay mass, the critical mass set by the axion-photon coupling. Axion stars that have reached the decay mass can accrete surrounding axions either via or directly from their host miniclusters, subsequently converting them into radio photons through parametric resonance. We demonstrate that this accretion provides observable signals by proposing two scenarios: 1) external accretion of background dark matter occurring via miniclusters, and 2) internal accretion of isolated systems occurring directly from the minicluster onto its core. The emitted radio photons are nearly monochromatic with energies around the half of the axion mass. The radio-line signal emanating from such axion stars provides a distinctive opportunity searching for axions, overcoming the widespread radio backgrounds. We estimate the expected radio-line flux density to constrain the axion-photon coupling g_aγγ at each axion mass and find that the resultant line flux density is strong enough to be observed in radio telescopes such as LOFAR, FAST, ALMA, and upcoming SKA. We can constrain the axion-photon coupling down to gaγγ ≃ 10-12–10-11 GeV-1, reaching even 10-13 GeV-1 depending on the accretion models of axion stars, over an axion mass range of ma ≃ 10-7–10-2 eV. From a different perspective, this radio-line signal could be a strong hint of an axion at the corresponding mass and also of axion stars within our galaxy.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"8 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/05/033","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Axion-like particles, which we call axions, can compose the missing dark matter and may form substructures such as miniclusters and axion stars. We obtain the mass distributions of axion stars derived from their host miniclusters in our galaxy and find a significant number of axion stars reaching the decay mass, the critical mass set by the axion-photon coupling. Axion stars that have reached the decay mass can accrete surrounding axions either via or directly from their host miniclusters, subsequently converting them into radio photons through parametric resonance. We demonstrate that this accretion provides observable signals by proposing two scenarios: 1) external accretion of background dark matter occurring via miniclusters, and 2) internal accretion of isolated systems occurring directly from the minicluster onto its core. The emitted radio photons are nearly monochromatic with energies around the half of the axion mass. The radio-line signal emanating from such axion stars provides a distinctive opportunity searching for axions, overcoming the widespread radio backgrounds. We estimate the expected radio-line flux density to constrain the axion-photon coupling g_aγγ at each axion mass and find that the resultant line flux density is strong enough to be observed in radio telescopes such as LOFAR, FAST, ALMA, and upcoming SKA. We can constrain the axion-photon coupling down to gaγγ ≃ 10-12–10-11 GeV-1, reaching even 10-13 GeV-1 depending on the accretion models of axion stars, over an axion mass range of ma ≃ 10-7–10-2 eV. From a different perspective, this radio-line signal could be a strong hint of an axion at the corresponding mass and also of axion stars within our galaxy.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.