{"title":"Entropy and Stability of Hyperbolic Manifolds","authors":"Antoine Song","doi":"10.1007/s00039-025-00711-3","DOIUrl":null,"url":null,"abstract":"<p>Let (<i>M</i>,<i>g</i><sub>0</sub>) be a closed oriented hyperbolic manifold of dimension at least 3. By the volume entropy inequality of G. Besson, G. Courtois and S. Gallot, for any Riemannian metric <i>g</i> on <i>M</i> with same volume as <i>g</i><sub>0</sub>, its volume entropy <i>h</i>(<i>g</i>) satisfies <i>h</i>(<i>g</i>)≥<i>n</i>−1 with equality only when <i>g</i> is isometric to <i>g</i><sub>0</sub>. We show that the hyperbolic metric <i>g</i><sub>0</sub> is stable in the following sense: if <i>g</i><sub><i>i</i></sub> is a sequence of Riemaniann metrics on <i>M</i> of same volume as <i>g</i><sub>0</sub> and if <i>h</i>(<i>g</i><sub><i>i</i></sub>) converges to <i>n</i>−1, then there are smooth subsets <i>Z</i><sub><i>i</i></sub>⊂<i>M</i> such that both <span>\\(\\operatorname{Vol}(Z_{i},g_{i})\\)</span> and <span>\\(\\operatorname{Area}(\\partial Z_{i},g_{i})\\)</span> tend to 0, and (<i>M</i>∖<i>Z</i><sub><i>i</i></sub>,<i>g</i><sub><i>i</i></sub>) converges to (<i>M</i>,<i>g</i><sub>0</sub>) in the measured Gromov-Hausdorff topology. The proof relies on showing that any spherical Plateau solution for <i>M</i> is intrinsically isomorphic to <span>\\((M,\\frac{(n-1)^{2}}{4n} g_{0})\\)</span>.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"29 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-025-00711-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let (M,g0) be a closed oriented hyperbolic manifold of dimension at least 3. By the volume entropy inequality of G. Besson, G. Courtois and S. Gallot, for any Riemannian metric g on M with same volume as g0, its volume entropy h(g) satisfies h(g)≥n−1 with equality only when g is isometric to g0. We show that the hyperbolic metric g0 is stable in the following sense: if gi is a sequence of Riemaniann metrics on M of same volume as g0 and if h(gi) converges to n−1, then there are smooth subsets Zi⊂M such that both \(\operatorname{Vol}(Z_{i},g_{i})\) and \(\operatorname{Area}(\partial Z_{i},g_{i})\) tend to 0, and (M∖Zi,gi) converges to (M,g0) in the measured Gromov-Hausdorff topology. The proof relies on showing that any spherical Plateau solution for M is intrinsically isomorphic to \((M,\frac{(n-1)^{2}}{4n} g_{0})\).
期刊介绍:
Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis.
GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016.
Publishes major results on topics in geometry and analysis.
Features papers which make connections between relevant fields and their applications to other areas.