Jackson K B Cahn,Henry Ludwicki,Jillian Shingler,Shannon Gulvin,Young Zhang,Adam Kristopeit,Christopher Ton,Michael A Winters,James M Wagner,Jeffrey Moore
{"title":"CRISPR-Editing of the Vero Cell Line Improves Processability of Live Virus Vaccines by Enabling Targeted Proteolysis of Fibronectin.","authors":"Jackson K B Cahn,Henry Ludwicki,Jillian Shingler,Shannon Gulvin,Young Zhang,Adam Kristopeit,Christopher Ton,Michael A Winters,James M Wagner,Jeffrey Moore","doi":"10.1002/bit.29028","DOIUrl":null,"url":null,"abstract":"Removal of host cell components is a significant cost driver in the production of live virus vaccines. Filtration processes such as tangential flow filtration can be effective in this capacity by leveraging the relative size difference between viral particles and host proteins; however, filtration membranes can be fouled by larger proteins, particularly those of the extracellular matrix. In this study, we used CRISPR editing to insert the recognition element of the highly-selective TEV protease into various positions of the gene encoding fibronectin in the genome of the Vero cell line, a common platform for viral production. By screening edited cell lines, we identified a promising candidate line in which fibronectin could be effectively removed by treating with the protease during processing, eliminating filter fouling and allowing for viral purification without the need for costly chromatography steps.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"3 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.29028","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Removal of host cell components is a significant cost driver in the production of live virus vaccines. Filtration processes such as tangential flow filtration can be effective in this capacity by leveraging the relative size difference between viral particles and host proteins; however, filtration membranes can be fouled by larger proteins, particularly those of the extracellular matrix. In this study, we used CRISPR editing to insert the recognition element of the highly-selective TEV protease into various positions of the gene encoding fibronectin in the genome of the Vero cell line, a common platform for viral production. By screening edited cell lines, we identified a promising candidate line in which fibronectin could be effectively removed by treating with the protease during processing, eliminating filter fouling and allowing for viral purification without the need for costly chromatography steps.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.