Ziheng Huang,Lin Zhang,Huarong Chen,Xiaodong Liu,Likai Tan,Dan Huang,Yingzhi Liu,Yushan Wang,Xinyi Zhang,Alfred Sze Lok Cheng,Maggie Haitian Wang,Wei Kang,Ka-Fai To,Jun Yu,Ho Ko,Le Yu,Sunny H Wong,Tony Gin,Matthew Tak Vai Chan,Xiansong Wang,William Ka Kei Wu
{"title":"Tumor Suppressor Genes with Segmental Duplications are Prone to Somatic Deletions and Structural Variations.","authors":"Ziheng Huang,Lin Zhang,Huarong Chen,Xiaodong Liu,Likai Tan,Dan Huang,Yingzhi Liu,Yushan Wang,Xinyi Zhang,Alfred Sze Lok Cheng,Maggie Haitian Wang,Wei Kang,Ka-Fai To,Jun Yu,Ho Ko,Le Yu,Sunny H Wong,Tony Gin,Matthew Tak Vai Chan,Xiansong Wang,William Ka Kei Wu","doi":"10.1158/0008-5472.can-24-2225","DOIUrl":null,"url":null,"abstract":"Segmental duplications (SDs) are blocks of genomic DNA with high sequence homology that are hotspots for chromosomal rearrangements, coinciding with copy-number and single-nucleotide variations in the population. SDs could represent unstable genomic regions that are susceptible to somatic alterations in human cancers. Here, we aimed to elucidate the genomic locations of SDs in relation to cancer-related genes and their propensity for somatic alterations in cancer. The analysis showed that tumor suppressor genes (TSGs) were less associated with SDs compared to non-cancer genes in nearly all mammalian species. TSGs with SDs were larger in size in humans but only modestly conserved among mammals. In humans, the proportion of non-cancer genes with SDs decreased as the gene age increased. However, for TSGs, a loss of association with SDs was apparent among young genes. Pan-cancer analysis revealed that TSGs with SDs were more prone to deletions and structural variations independently of gene size. Re-analysis of publicly available experimental data further revealed that genes with SDs tended to replicate late and were more likely to undergo the error-prone mitotic DNA synthesis upon replication stress. In conclusion, the loss of SDs from TSGs during mammalian evolution protects against tumor formation by reducing somatic alterations.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"96 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-2225","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Segmental duplications (SDs) are blocks of genomic DNA with high sequence homology that are hotspots for chromosomal rearrangements, coinciding with copy-number and single-nucleotide variations in the population. SDs could represent unstable genomic regions that are susceptible to somatic alterations in human cancers. Here, we aimed to elucidate the genomic locations of SDs in relation to cancer-related genes and their propensity for somatic alterations in cancer. The analysis showed that tumor suppressor genes (TSGs) were less associated with SDs compared to non-cancer genes in nearly all mammalian species. TSGs with SDs were larger in size in humans but only modestly conserved among mammals. In humans, the proportion of non-cancer genes with SDs decreased as the gene age increased. However, for TSGs, a loss of association with SDs was apparent among young genes. Pan-cancer analysis revealed that TSGs with SDs were more prone to deletions and structural variations independently of gene size. Re-analysis of publicly available experimental data further revealed that genes with SDs tended to replicate late and were more likely to undergo the error-prone mitotic DNA synthesis upon replication stress. In conclusion, the loss of SDs from TSGs during mammalian evolution protects against tumor formation by reducing somatic alterations.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.