Alpaca. A Simplified and Reproducible Python-Based Pipeline for Absolute Proteome Quantification Data Mining

IF 3.4 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Proteomics Pub Date : 2025-04-26 DOI:10.1002/pmic.202400417
Borja Ferrero-Bordera, Dörte Becher, Sandra Maaß
{"title":"Alpaca. A Simplified and Reproducible Python-Based Pipeline for Absolute Proteome Quantification Data Mining","authors":"Borja Ferrero-Bordera,&nbsp;Dörte Becher,&nbsp;Sandra Maaß","doi":"10.1002/pmic.202400417","DOIUrl":null,"url":null,"abstract":"<p>The accurate construction of computational models in systems biology heavily relies on the availability of quantitative proteomics data, specifically, absolute protein abundances. However, the complex nature of proteomics data analysis necessitates specialised expertise, making the integration of this data into models challenging. Therefore, the development of software tools that ease the analysis of proteomics data and bridge between disciplines is crucial for advancing the field of systems biology. We developed an open access Python-based software tool available either as downloadable library or as web-based graphical user interface (GUI). The pipeline simplifies the extraction and calculation of protein abundances from unprocessed proteomics data, accommodating a range of experimental approaches based on label-free quantification. Our tool was conceived as a versatile and robust pipeline designed to ease and simplify data analysis, thereby improving reproducibility between researchers and institutions. Moreover, the robust modular structure of Alpaca allows its integration with other software tools.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":"25 9-10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pmic.202400417","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202400417","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate construction of computational models in systems biology heavily relies on the availability of quantitative proteomics data, specifically, absolute protein abundances. However, the complex nature of proteomics data analysis necessitates specialised expertise, making the integration of this data into models challenging. Therefore, the development of software tools that ease the analysis of proteomics data and bridge between disciplines is crucial for advancing the field of systems biology. We developed an open access Python-based software tool available either as downloadable library or as web-based graphical user interface (GUI). The pipeline simplifies the extraction and calculation of protein abundances from unprocessed proteomics data, accommodating a range of experimental approaches based on label-free quantification. Our tool was conceived as a versatile and robust pipeline designed to ease and simplify data analysis, thereby improving reproducibility between researchers and institutions. Moreover, the robust modular structure of Alpaca allows its integration with other software tools.

羊驼。一个简化和可复制的基于python的绝对蛋白质组定量数据挖掘管道
系统生物学中计算模型的准确构建在很大程度上依赖于定量蛋白质组学数据的可用性,特别是绝对蛋白质丰度。然而,蛋白质组学数据分析的复杂性需要专门的专业知识,这使得将这些数据集成到模型中具有挑战性。因此,开发能够简化蛋白质组学数据分析和学科之间桥梁的软件工具对于推进系统生物学领域至关重要。我们开发了一个开放访问的基于python的软件工具,可以作为可下载的库或基于web的图形用户界面(GUI)。该管道简化了未处理蛋白质组学数据中蛋白质丰度的提取和计算,适应一系列基于无标记定量的实验方法。我们的工具被认为是一个多功能和强大的管道,旨在简化和简化数据分析,从而提高研究人员和机构之间的可重复性。此外,Alpaca强大的模块化结构允许其与其他软件工具集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信