{"title":"Alpaca. A Simplified and Reproducible Python-Based Pipeline for Absolute Proteome Quantification Data Mining","authors":"Borja Ferrero-Bordera, Dörte Becher, Sandra Maaß","doi":"10.1002/pmic.202400417","DOIUrl":null,"url":null,"abstract":"<p>The accurate construction of computational models in systems biology heavily relies on the availability of quantitative proteomics data, specifically, absolute protein abundances. However, the complex nature of proteomics data analysis necessitates specialised expertise, making the integration of this data into models challenging. Therefore, the development of software tools that ease the analysis of proteomics data and bridge between disciplines is crucial for advancing the field of systems biology. We developed an open access Python-based software tool available either as downloadable library or as web-based graphical user interface (GUI). The pipeline simplifies the extraction and calculation of protein abundances from unprocessed proteomics data, accommodating a range of experimental approaches based on label-free quantification. Our tool was conceived as a versatile and robust pipeline designed to ease and simplify data analysis, thereby improving reproducibility between researchers and institutions. Moreover, the robust modular structure of Alpaca allows its integration with other software tools.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":"25 9-10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pmic.202400417","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202400417","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate construction of computational models in systems biology heavily relies on the availability of quantitative proteomics data, specifically, absolute protein abundances. However, the complex nature of proteomics data analysis necessitates specialised expertise, making the integration of this data into models challenging. Therefore, the development of software tools that ease the analysis of proteomics data and bridge between disciplines is crucial for advancing the field of systems biology. We developed an open access Python-based software tool available either as downloadable library or as web-based graphical user interface (GUI). The pipeline simplifies the extraction and calculation of protein abundances from unprocessed proteomics data, accommodating a range of experimental approaches based on label-free quantification. Our tool was conceived as a versatile and robust pipeline designed to ease and simplify data analysis, thereby improving reproducibility between researchers and institutions. Moreover, the robust modular structure of Alpaca allows its integration with other software tools.
期刊介绍:
PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.