Peptide Property Prediction for Mass Spectrometry Using AI: An Introduction to State of the Art Models

IF 3.9 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Proteomics Pub Date : 2025-04-10 DOI:10.1002/pmic.202400398
Jesse Angelis, Eva Ayla Schröder, Zixuan Xiao, Wassim Gabriel, Mathias Wilhelm
{"title":"Peptide Property Prediction for Mass Spectrometry Using AI: An Introduction to State of the Art Models","authors":"Jesse Angelis,&nbsp;Eva Ayla Schröder,&nbsp;Zixuan Xiao,&nbsp;Wassim Gabriel,&nbsp;Mathias Wilhelm","doi":"10.1002/pmic.202400398","DOIUrl":null,"url":null,"abstract":"<p>This review explores state of the art machine learning and deep learning models for peptide property prediction in mass spectrometry-based proteomics, including, but not limited to, models for predicting digestibility, retention time, charge state distribution, collisional cross section, fragmentation ion intensities, and detectability. The combination of these models enables not only the in silico generation of spectral libraries but also finds many additional use cases in the design of targeted assays or data-driven rescoring. This review serves as both an introduction for newcomers and an update for experienced researchers aiming to develop accessible and reproducible models for peptide property predictions. Key limitations of the current models, including difficulties in handling diverse post-translational modifications and instrument variability, highlight the need for large-scale, harmonized datasets, and standardized evaluation metrics for benchmarking.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":"25 9-10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pmic.202400398","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/pmic.202400398","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This review explores state of the art machine learning and deep learning models for peptide property prediction in mass spectrometry-based proteomics, including, but not limited to, models for predicting digestibility, retention time, charge state distribution, collisional cross section, fragmentation ion intensities, and detectability. The combination of these models enables not only the in silico generation of spectral libraries but also finds many additional use cases in the design of targeted assays or data-driven rescoring. This review serves as both an introduction for newcomers and an update for experienced researchers aiming to develop accessible and reproducible models for peptide property predictions. Key limitations of the current models, including difficulties in handling diverse post-translational modifications and instrument variability, highlight the need for large-scale, harmonized datasets, and standardized evaluation metrics for benchmarking.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

利用人工智能进行质谱分析的多肽特性预测:介绍最新的模型
本综述探讨了基于质谱的蛋白质组学中用于肽特性预测的最先进的机器学习和深度学习模型,包括但不限于预测消化率、保留时间、电荷态分布、碰撞横截面、碎片离子强度和可检测性的模型。这些模型的组合不仅可以在计算机上生成谱库,还可以在目标分析或数据驱动的评分设计中找到许多额外的用例。这篇综述既可以作为新手的介绍,也可以为有经验的研究人员提供更新,旨在开发可访问和可重复的肽性质预测模型。当前模型的主要局限性,包括难以处理各种翻译后修改和仪器的可变性,强调需要大规模、统一的数据集和标准化的基准评估指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信