Multiscale spatiotemporal analysis of carbon dioxide emissions in China from 2012 to 2021 based on kernel normalized difference vegetation index and nighttime light data

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Rui Liu, Decheng Wang, Xirong Guo, Runcan Han, Jialiang Han, Kai Cao, Xin Pan, Juncheng Gou
{"title":"Multiscale spatiotemporal analysis of carbon dioxide emissions in China from 2012 to 2021 based on kernel normalized difference vegetation index and nighttime light data","authors":"Rui Liu,&nbsp;Decheng Wang,&nbsp;Xirong Guo,&nbsp;Runcan Han,&nbsp;Jialiang Han,&nbsp;Kai Cao,&nbsp;Xin Pan,&nbsp;Juncheng Gou","doi":"10.1007/s10661-025-14097-0","DOIUrl":null,"url":null,"abstract":"<div><p>To achieve carbon peaking and carbon neutrality, it is crucial to accurately understand the spatial distribution of carbon dioxide emissions (CE). However, current research primarily focuses on macro perspectives at global and national scales, making it challenging to analyze the detailed spatiotemporal changes in CE. This study combines remote sensing technology with statistical models and, for the first time, integrates the kernel normalized difference vegetation index (kNDVI) and NPP-VIIRS nighttime light data (NTL) to establish the kernel vegetation nighttime light index (kVNTL). Using this foundation, we utilized the geographically and temporally weighted regression (GTWR) model to generate 250-m resolution CE raster maps of China for the period from 2012 to 2021. The model’s fit was exceptional, with an adjusted <i>R</i><sup>2</sup> of 0.96. Furthermore, we employed kernel density analysis, trend analysis, hotspot analysis, and directional distribution to unveil the spatiotemporal dynamics of CE in China. The results indicate that (1) the proposed kVNTL significantly improved the accuracy of CE estimates compared to NTL. (2) From 2012 to 2021, China’s CE showed uneven distribution, manifesting significant clustering. (3) Regional interactions and geographical location significantly influenced China’s CE. (4) The northwestern regions of China have gradually become high CE areas.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-14097-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve carbon peaking and carbon neutrality, it is crucial to accurately understand the spatial distribution of carbon dioxide emissions (CE). However, current research primarily focuses on macro perspectives at global and national scales, making it challenging to analyze the detailed spatiotemporal changes in CE. This study combines remote sensing technology with statistical models and, for the first time, integrates the kernel normalized difference vegetation index (kNDVI) and NPP-VIIRS nighttime light data (NTL) to establish the kernel vegetation nighttime light index (kVNTL). Using this foundation, we utilized the geographically and temporally weighted regression (GTWR) model to generate 250-m resolution CE raster maps of China for the period from 2012 to 2021. The model’s fit was exceptional, with an adjusted R2 of 0.96. Furthermore, we employed kernel density analysis, trend analysis, hotspot analysis, and directional distribution to unveil the spatiotemporal dynamics of CE in China. The results indicate that (1) the proposed kVNTL significantly improved the accuracy of CE estimates compared to NTL. (2) From 2012 to 2021, China’s CE showed uneven distribution, manifesting significant clustering. (3) Regional interactions and geographical location significantly influenced China’s CE. (4) The northwestern regions of China have gradually become high CE areas.

基于核归一化植被指数和夜间光照数据的2012 - 2021年中国二氧化碳排放多尺度时空分析
为了实现碳峰值和碳中和,准确了解二氧化碳排放的空间分布是至关重要的。然而,目前的研究主要集中在全球和国家尺度的宏观视角上,难以分析碳排放的详细时空变化。本研究将遥感技术与统计模型相结合,首次将核归一化植被指数(kNDVI)与NPP-VIIRS夜间光照数据(NTL)相结合,建立核植被夜间光照指数(kVNTL)。在此基础上,利用地理和时间加权回归(GTWR)模型生成了2012 - 2021年中国250 m分辨率CE栅格地图。模型的拟合非常好,调整后的R2为0.96。通过核密度分析、趋势分析、热点分析和方向分布分析,揭示了中国CE的时空动态。结果表明:(1)与NTL相比,kVNTL显著提高了CE估计的准确性。(2) 2012 - 2021年,中国CE分布不均匀,集群性显著。(3)区域相互作用和地理位置显著影响中国经济绩效。(4)西北地区逐渐成为高CE区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信