Generalized classical Yang-Baxter equation and regular decompositions

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
R. Abedin, S. Maximov, A. Stolin
{"title":"Generalized classical Yang-Baxter equation and regular decompositions","authors":"R. Abedin,&nbsp;S. Maximov,&nbsp;A. Stolin","doi":"10.1007/s11005-025-01930-3","DOIUrl":null,"url":null,"abstract":"<div><p>The focus of the paper is on constructing new solutions of the generalized classical Yang-Baxter equation (GCYBE) that are not skew-symmetric. Using regular decompositions of finite-dimensional simple Lie algebras, we construct Lie algebra decompositions of <span>\\(\\mathfrak {g}(\\!(x)\\!) \\times \\mathfrak {g}[x]/x^m \\mathfrak {g}[x]\\)</span>. The latter decompositions are in bijection with the solutions to the GCYBE. Under appropriate regularity conditions, we obtain a partial classification of such solutions. The paper is concluded with the presentations of the Gaudin-type models associated to these solutions.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01930-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01930-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The focus of the paper is on constructing new solutions of the generalized classical Yang-Baxter equation (GCYBE) that are not skew-symmetric. Using regular decompositions of finite-dimensional simple Lie algebras, we construct Lie algebra decompositions of \(\mathfrak {g}(\!(x)\!) \times \mathfrak {g}[x]/x^m \mathfrak {g}[x]\). The latter decompositions are in bijection with the solutions to the GCYBE. Under appropriate regularity conditions, we obtain a partial classification of such solutions. The paper is concluded with the presentations of the Gaudin-type models associated to these solutions.

广义经典Yang-Baxter方程及正则分解
本文的重点是构造非偏对称广义经典Yang-Baxter方程(GCYBE)的新解。利用有限维简单李代数的正则分解,构造了\(\mathfrak {g}(\!(x)\!) \times \mathfrak {g}[x]/x^m \mathfrak {g}[x]\)的李代数分解。后一种分解与GCYBE的解是相对应的。在适当的正则性条件下,我们得到了这类解的部分分类。本文最后给出了与这些解相关的高登型模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信