{"title":"Generalized classical Yang-Baxter equation and regular decompositions","authors":"R. Abedin, S. Maximov, A. Stolin","doi":"10.1007/s11005-025-01930-3","DOIUrl":null,"url":null,"abstract":"<div><p>The focus of the paper is on constructing new solutions of the generalized classical Yang-Baxter equation (GCYBE) that are not skew-symmetric. Using regular decompositions of finite-dimensional simple Lie algebras, we construct Lie algebra decompositions of <span>\\(\\mathfrak {g}(\\!(x)\\!) \\times \\mathfrak {g}[x]/x^m \\mathfrak {g}[x]\\)</span>. The latter decompositions are in bijection with the solutions to the GCYBE. Under appropriate regularity conditions, we obtain a partial classification of such solutions. The paper is concluded with the presentations of the Gaudin-type models associated to these solutions.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01930-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01930-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The focus of the paper is on constructing new solutions of the generalized classical Yang-Baxter equation (GCYBE) that are not skew-symmetric. Using regular decompositions of finite-dimensional simple Lie algebras, we construct Lie algebra decompositions of \(\mathfrak {g}(\!(x)\!) \times \mathfrak {g}[x]/x^m \mathfrak {g}[x]\). The latter decompositions are in bijection with the solutions to the GCYBE. Under appropriate regularity conditions, we obtain a partial classification of such solutions. The paper is concluded with the presentations of the Gaudin-type models associated to these solutions.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.