Machine learning-driven antiviral libraries targeting respiratory viruses†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gabriela Valle-Núñez, Raziel Cedillo-González, Juan F. Avellaneda-Tamayo, Fernanda I. Saldívar-González, Diana L. Prado-Romero and José L. Medina-Franco
{"title":"Machine learning-driven antiviral libraries targeting respiratory viruses†","authors":"Gabriela Valle-Núñez, Raziel Cedillo-González, Juan F. Avellaneda-Tamayo, Fernanda I. Saldívar-González, Diana L. Prado-Romero and José L. Medina-Franco","doi":"10.1039/D5DD00037H","DOIUrl":null,"url":null,"abstract":"<p >Viral infections represent a significant global health concern. Viral diseases can range from mild symptoms to life-threatening conditions, and the impact of these infections has grown due to increased contagious rates driven by globalization. A prime example is the SARS-CoV-2 pandemic, which emphasized the urgent need to design and develop new antiviral drugs. This study aimed to generate a curated data set of compounds relevant to respiratory infections, focusing on predicting their antiviral activity. Specifically, the study leverages ML classification models to evaluate focused and on-demand compound libraries targeting pathways associated with viral respiratory infections. ML models were trained based on the antiviral biological activity related to respiratory diseases deposited on a major public compound database annotated with biological activity. The models were validated and retrained to classify and design antiviral-focused libraries on seven respiratory targets.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 5","pages":" 1239-1258"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00037h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00037h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Viral infections represent a significant global health concern. Viral diseases can range from mild symptoms to life-threatening conditions, and the impact of these infections has grown due to increased contagious rates driven by globalization. A prime example is the SARS-CoV-2 pandemic, which emphasized the urgent need to design and develop new antiviral drugs. This study aimed to generate a curated data set of compounds relevant to respiratory infections, focusing on predicting their antiviral activity. Specifically, the study leverages ML classification models to evaluate focused and on-demand compound libraries targeting pathways associated with viral respiratory infections. ML models were trained based on the antiviral biological activity related to respiratory diseases deposited on a major public compound database annotated with biological activity. The models were validated and retrained to classify and design antiviral-focused libraries on seven respiratory targets.

针对呼吸道病毒的机器学习驱动的抗病毒文库
病毒感染是一个重大的全球卫生问题。病毒性疾病的范围从轻微症状到危及生命的病症,由于全球化推动的传染病率上升,这些感染的影响已经扩大。一个典型的例子是SARS-CoV-2大流行,它强调了迫切需要设计和开发新的抗病毒药物。本研究旨在生成与呼吸道感染相关的化合物的精选数据集,重点是预测它们的抗病毒活性。具体来说,该研究利用ML分类模型来评估靶向与病毒性呼吸道感染相关途径的集中和按需化合物文库。ML模型的训练基于与呼吸系统疾病相关的抗病毒生物活性,这些生物活性存储在一个带有生物活性注释的主要公共化合物数据库中。这些模型经过验证和再训练,以分类和设计针对7个呼吸靶点的抗病毒文库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信