Gabriela Valle-Núñez, Raziel Cedillo-González, Juan F. Avellaneda-Tamayo, Fernanda I. Saldívar-González, Diana L. Prado-Romero and José L. Medina-Franco
{"title":"Machine learning-driven antiviral libraries targeting respiratory viruses†","authors":"Gabriela Valle-Núñez, Raziel Cedillo-González, Juan F. Avellaneda-Tamayo, Fernanda I. Saldívar-González, Diana L. Prado-Romero and José L. Medina-Franco","doi":"10.1039/D5DD00037H","DOIUrl":null,"url":null,"abstract":"<p >Viral infections represent a significant global health concern. Viral diseases can range from mild symptoms to life-threatening conditions, and the impact of these infections has grown due to increased contagious rates driven by globalization. A prime example is the SARS-CoV-2 pandemic, which emphasized the urgent need to design and develop new antiviral drugs. This study aimed to generate a curated data set of compounds relevant to respiratory infections, focusing on predicting their antiviral activity. Specifically, the study leverages ML classification models to evaluate focused and on-demand compound libraries targeting pathways associated with viral respiratory infections. ML models were trained based on the antiviral biological activity related to respiratory diseases deposited on a major public compound database annotated with biological activity. The models were validated and retrained to classify and design antiviral-focused libraries on seven respiratory targets.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 5","pages":" 1239-1258"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00037h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00037h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Viral infections represent a significant global health concern. Viral diseases can range from mild symptoms to life-threatening conditions, and the impact of these infections has grown due to increased contagious rates driven by globalization. A prime example is the SARS-CoV-2 pandemic, which emphasized the urgent need to design and develop new antiviral drugs. This study aimed to generate a curated data set of compounds relevant to respiratory infections, focusing on predicting their antiviral activity. Specifically, the study leverages ML classification models to evaluate focused and on-demand compound libraries targeting pathways associated with viral respiratory infections. ML models were trained based on the antiviral biological activity related to respiratory diseases deposited on a major public compound database annotated with biological activity. The models were validated and retrained to classify and design antiviral-focused libraries on seven respiratory targets.