Machine learning-driven optimization of the output force in photo-actuated organic crystals†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kazuki Ishizaki, Toru Asahi and Takuya Taniguchi
{"title":"Machine learning-driven optimization of the output force in photo-actuated organic crystals†","authors":"Kazuki Ishizaki, Toru Asahi and Takuya Taniguchi","doi":"10.1039/D4DD00380B","DOIUrl":null,"url":null,"abstract":"<p >Photo-actuated organic crystals that can be remotely controlled by light are gaining attention as next-generation actuator materials. In the practical application of actuator materials, the mode of deformation and the output force are important properties. Since the output force depends on the crystal properties and experimental conditions, it is necessary to explore the optimal conditions from a vast parameter space. In this study, we employed two types of machine learning for molecular design and experimental optimization to maximize the blocking force. Machine learning in molecular design led to the creation of a material pool of salicylideneamine derivatives. Bayesian optimization was used for efficient sampling from the material pool for force measurements in the real world, achieving a maximum blocking force of 37.0 mN. This method was at least 73 times more efficient than the grid search approach.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 5","pages":" 1199-1208"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00380b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00380b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photo-actuated organic crystals that can be remotely controlled by light are gaining attention as next-generation actuator materials. In the practical application of actuator materials, the mode of deformation and the output force are important properties. Since the output force depends on the crystal properties and experimental conditions, it is necessary to explore the optimal conditions from a vast parameter space. In this study, we employed two types of machine learning for molecular design and experimental optimization to maximize the blocking force. Machine learning in molecular design led to the creation of a material pool of salicylideneamine derivatives. Bayesian optimization was used for efficient sampling from the material pool for force measurements in the real world, achieving a maximum blocking force of 37.0 mN. This method was at least 73 times more efficient than the grid search approach.

光驱动有机晶体中输出力的机器学习驱动优化
光致动有机晶体作为下一代致动材料正受到人们的关注。在作动器材料的实际应用中,其变形方式和输出力是重要的性能。由于输出力取决于晶体性质和实验条件,因此有必要从广阔的参数空间中探索最佳条件。在这项研究中,我们采用了两种类型的机器学习进行分子设计和实验优化,以最大化阻挡力。分子设计中的机器学习导致了水杨柳二胺衍生物材料池的创建。利用贝叶斯优化从材料池中进行有效采样,在现实世界中进行力测量,获得了37.0 mN的最大阻挡力。这种方法的效率至少是网格搜索方法的73倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信