DOPtools: a Python platform for descriptor calculation and model optimization

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Said Byadi, Philippe Gantzer, Timur Gimadiev and Pavel Sidorov
{"title":"DOPtools: a Python platform for descriptor calculation and model optimization","authors":"Said Byadi, Philippe Gantzer, Timur Gimadiev and Pavel Sidorov","doi":"10.1039/D4DD00399C","DOIUrl":null,"url":null,"abstract":"<p >The DOPtools (Descriptors and Optimization tools) platform is a Python library for the calculation of chemical descriptors, hyperparameter optimization, and building and validation of QSPR models. In addition to the Python code that can be integrated in custom scripts, it provides a command line interface for the automatic calculation of various descriptors and for eventual hyperparameter optimization of statistical models, enabling its use in server applications for QSPR modeling. It is especially suited for modeling reaction properties <em>via</em> functions that calculate descriptors for all reaction components. While a variety of existing tools and libraries can calculate various molecular descriptors, their output format is often unique, which complicates their integration with standard machine learning libraries. DOPtools provides a unified API for the calculated descriptors as input for the scikit-learn library. The modular nature of the code allows easy addition of algorithms if required by the end user. The code for the platform is freely available at GitHub and can be installed through PyPI.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 5","pages":" 1188-1198"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00399c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00399c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The DOPtools (Descriptors and Optimization tools) platform is a Python library for the calculation of chemical descriptors, hyperparameter optimization, and building and validation of QSPR models. In addition to the Python code that can be integrated in custom scripts, it provides a command line interface for the automatic calculation of various descriptors and for eventual hyperparameter optimization of statistical models, enabling its use in server applications for QSPR modeling. It is especially suited for modeling reaction properties via functions that calculate descriptors for all reaction components. While a variety of existing tools and libraries can calculate various molecular descriptors, their output format is often unique, which complicates their integration with standard machine learning libraries. DOPtools provides a unified API for the calculated descriptors as input for the scikit-learn library. The modular nature of the code allows easy addition of algorithms if required by the end user. The code for the platform is freely available at GitHub and can be installed through PyPI.

DOPtools:用于描述符计算和模型优化的Python平台
DOPtools(描述符和优化工具)平台是一个Python库,用于计算化学描述符、超参数优化以及构建和验证QSPR模型。除了可以集成到自定义脚本中的Python代码之外,它还提供了一个命令行接口,用于自动计算各种描述符和最终对统计模型进行超参数优化,从而使其能够在服务器应用程序中用于QSPR建模。它特别适合通过计算所有反应组分的描述符的函数来建模反应性质。虽然各种现有工具和库可以计算各种分子描述符,但它们的输出格式通常是唯一的,这使得它们与标准机器学习库的集成变得复杂。DOPtools为计算出来的描述符提供了一个统一的API,作为scikit-learn库的输入。如果最终用户需要,代码的模块化特性允许轻松添加算法。该平台的代码可以在GitHub上免费获得,并可以通过PyPI安装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信