Jiebin Yan;Jiale Rao;Xuelin Liu;Yuming Fang;Yifan Zuo;Weide Liu
{"title":"Subjective and Objective Quality Assessment of Non-Uniformly Distorted Omnidirectional Images","authors":"Jiebin Yan;Jiale Rao;Xuelin Liu;Yuming Fang;Yifan Zuo;Weide Liu","doi":"10.1109/TMM.2025.3535372","DOIUrl":null,"url":null,"abstract":"Omnidirectional image quality assessment (OIQA) has been one of the hot topics in IQA with the continuous development of VR techniques, and achieved much success in the past few years. However, most studies devote themselves to the uniform distortion issue, i.e., all regions of an omnidirectional image are perturbed by the “same amount” of noise, while ignoring the non-uniform distortion issue, i.e., partial regions undergo “different amount” of perturbation with the other regions in the same omnidirectional image. Additionally, nearly all OIQA models are verified on the platforms containing a limited number of samples, which largely increases the over-fitting risk and therefore impedes the development of OIQA. To alleviate these issues, we elaborately explore this topic from both subjective and objective perspectives. Specifically, we construct a large OIQA database containing 10,320 non-uniformly distorted omnidirectional images, each of which is generated by considering quality impairments on one or two camera len(s). Then we meticulously conduct psychophysical experiments and delve into the influence of both holistic and individual factors (i.e., distortion range and viewing condition) on omnidirectional image quality. Furthermore, we propose a perception-guided OIQA model for non-uniform distortion by adaptively simulating users' viewing behavior. Experimental results demonstrate that the proposed model outperforms state-of-the-art methods.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"2695-2707"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10855437/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Omnidirectional image quality assessment (OIQA) has been one of the hot topics in IQA with the continuous development of VR techniques, and achieved much success in the past few years. However, most studies devote themselves to the uniform distortion issue, i.e., all regions of an omnidirectional image are perturbed by the “same amount” of noise, while ignoring the non-uniform distortion issue, i.e., partial regions undergo “different amount” of perturbation with the other regions in the same omnidirectional image. Additionally, nearly all OIQA models are verified on the platforms containing a limited number of samples, which largely increases the over-fitting risk and therefore impedes the development of OIQA. To alleviate these issues, we elaborately explore this topic from both subjective and objective perspectives. Specifically, we construct a large OIQA database containing 10,320 non-uniformly distorted omnidirectional images, each of which is generated by considering quality impairments on one or two camera len(s). Then we meticulously conduct psychophysical experiments and delve into the influence of both holistic and individual factors (i.e., distortion range and viewing condition) on omnidirectional image quality. Furthermore, we propose a perception-guided OIQA model for non-uniform distortion by adaptively simulating users' viewing behavior. Experimental results demonstrate that the proposed model outperforms state-of-the-art methods.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.