EMS-Net: Efficient Multiscale Perceptual Enhancement Tiny Object Detector for Remote Sensing Images

Pinwei Chen;Wentao Lyu;Qing Guo;Zhijiang Deng;Weiqiang Xu
{"title":"EMS-Net: Efficient Multiscale Perceptual Enhancement Tiny Object Detector for Remote Sensing Images","authors":"Pinwei Chen;Wentao Lyu;Qing Guo;Zhijiang Deng;Weiqiang Xu","doi":"10.1109/LGRS.2025.3565583","DOIUrl":null,"url":null,"abstract":"Detecting tiny objects in remote sensing images has always been a challenging and intensive research area. This problem has not been well-solved due to the fact that object detection (OD) in remote sensing images is characterized by large-scale variations and complex backgrounds. On this basis, we propose the efficient multi-scale semantic-aware network (EMS-Net) constructed based on YOLOv8s for tiny OD network in remote sensing images. First, a new module multibranch context aggregation (MCA) is proposed to improve deep feature extraction and deep feature fusion of the model. In addition, we use our self-designed multiscale feature communication module (MFCM) aimed at reducing the loss of semantic information of object and mitigating the obstruction of foreground object by complex background. Finally, Wise IoU-Normalized Wasserstein distance (WIoU-NWD) is used as the bounding box regression loss to adapt the model to different object scale while improving the ability to localize tiny object. Comprehensive experiments on three popular datasets demonstrate that our method outperforms existing detectors, particularly in detecting tiny objects. Specifically, our approach achieves the mean average precision (mAP) of 77.2% on the DIOR dataset, 96.7% on the Remote Sensing Object Detection (RSOD) dataset, and 75.1% on the DOTA-v1.5 dataset.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10980106/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting tiny objects in remote sensing images has always been a challenging and intensive research area. This problem has not been well-solved due to the fact that object detection (OD) in remote sensing images is characterized by large-scale variations and complex backgrounds. On this basis, we propose the efficient multi-scale semantic-aware network (EMS-Net) constructed based on YOLOv8s for tiny OD network in remote sensing images. First, a new module multibranch context aggregation (MCA) is proposed to improve deep feature extraction and deep feature fusion of the model. In addition, we use our self-designed multiscale feature communication module (MFCM) aimed at reducing the loss of semantic information of object and mitigating the obstruction of foreground object by complex background. Finally, Wise IoU-Normalized Wasserstein distance (WIoU-NWD) is used as the bounding box regression loss to adapt the model to different object scale while improving the ability to localize tiny object. Comprehensive experiments on three popular datasets demonstrate that our method outperforms existing detectors, particularly in detecting tiny objects. Specifically, our approach achieves the mean average precision (mAP) of 77.2% on the DIOR dataset, 96.7% on the Remote Sensing Object Detection (RSOD) dataset, and 75.1% on the DOTA-v1.5 dataset.
EMS-Net:高效的遥感图像多尺度感知增强微小目标检测器
遥感图像中微小目标的检测一直是一个具有挑战性的热点研究领域。由于遥感图像的目标检测具有变化大、背景复杂等特点,这一问题一直没有得到很好的解决。在此基础上,我们提出了基于YOLOv8s构建的高效多尺度语义感知网络(EMS-Net),用于遥感图像中的微小OD网络。首先,提出了一种新的模块多分支上下文聚合(MCA)方法来改进模型的深度特征提取和深度特征融合;此外,我们采用自主设计的多尺度特征通信模块(MFCM)来减少目标语义信息的丢失,减轻复杂背景对前景目标的阻碍。最后,采用Wise IoU-Normalized Wasserstein distance (WIoU-NWD)作为边界盒回归损失,使模型适应不同的目标尺度,同时提高对微小目标的定位能力。在三个流行的数据集上进行的综合实验表明,我们的方法优于现有的检测器,特别是在检测微小物体方面。具体而言,我们的方法在DIOR数据集上实现了77.2%的平均精度(mAP),在遥感目标检测(RSOD)数据集上实现了96.7%,在DOTA-v1.5数据集上实现了75.1%的平均精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信