Learning Instructive Frequency Spectral and Curvature Features for Cloud Detection

Wanjuan Hu;Guanyi Li;Guoguo Zhang;Liang Chang;Dan Zeng
{"title":"Learning Instructive Frequency Spectral and Curvature Features for Cloud Detection","authors":"Wanjuan Hu;Guanyi Li;Guoguo Zhang;Liang Chang;Dan Zeng","doi":"10.1109/LGRS.2025.3561935","DOIUrl":null,"url":null,"abstract":"Current cloud detection methods often treat all spectral bands equally, which limits their ability to capture instructive clues necessary for accurate detection. As a result, distinguishing clouds from snow in coexisting environments remains challenging. Moreover, most approaches struggle to adaptively model the boundaries of clouds, which is crucial for detecting thin clouds with ambiguous edges. To address these challenges, we propose a novel approach for cloud detection called FSCFNet, which captures guiding visual features from frequency and curvature computations. FSCFNet comprises two key modules: the frequency spectral feature enhancement module (FSFEM) and the curvature-based edge-awareness module (CEAM). The FSFEM leverages the distinct characteristics of spectral bands to extract instructive visual cues, enabling the network to learn robust discriminative features for ice, snow, and clouds. In contrast, the CEAM adaptively identifies texture-rich regions using curvature, enhancing the ability to delineate thin cloud boundaries. Comprehensive quantitative and qualitative experiments on the Landsat 8 and MODIS datasets demonstrate that FSCFNet consistently outperforms state-of-the-art methods. Our code is publicly available at <uri>https://github.com/wanjuanhu/FSCFNet/tree/main</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10967559/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current cloud detection methods often treat all spectral bands equally, which limits their ability to capture instructive clues necessary for accurate detection. As a result, distinguishing clouds from snow in coexisting environments remains challenging. Moreover, most approaches struggle to adaptively model the boundaries of clouds, which is crucial for detecting thin clouds with ambiguous edges. To address these challenges, we propose a novel approach for cloud detection called FSCFNet, which captures guiding visual features from frequency and curvature computations. FSCFNet comprises two key modules: the frequency spectral feature enhancement module (FSFEM) and the curvature-based edge-awareness module (CEAM). The FSFEM leverages the distinct characteristics of spectral bands to extract instructive visual cues, enabling the network to learn robust discriminative features for ice, snow, and clouds. In contrast, the CEAM adaptively identifies texture-rich regions using curvature, enhancing the ability to delineate thin cloud boundaries. Comprehensive quantitative and qualitative experiments on the Landsat 8 and MODIS datasets demonstrate that FSCFNet consistently outperforms state-of-the-art methods. Our code is publicly available at https://github.com/wanjuanhu/FSCFNet/tree/main
学习用于云检测的指导性频谱和曲率特征
目前的云探测方法通常对所有光谱波段一视同仁,这限制了它们捕捉精确探测所必需的指导性线索的能力。因此,在共存的环境中区分云和雪仍然是一个挑战。此外,大多数方法都难以对云的边界进行自适应建模,这对于检测边缘模糊的薄云至关重要。为了解决这些挑战,我们提出了一种名为FSCFNet的云检测新方法,该方法从频率和曲率计算中捕获指导视觉特征。FSCFNet包括两个关键模块:频谱特征增强模块(FSFEM)和基于曲率的边缘感知模块(CEAM)。FSFEM利用光谱带的独特特征来提取指导性的视觉线索,使网络能够学习冰、雪和云的鲁棒区分特征。相比之下,CEAM使用曲率自适应识别纹理丰富的区域,增强了描绘薄云边界的能力。在Landsat 8和MODIS数据集上进行的综合定量和定性实验表明,FSCFNet始终优于最先进的方法。我们的代码可以在https://github.com/wanjuanhu/FSCFNet/tree/main上公开获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信