Ester López-Aguilar , Silvia Cecilia Pacheco-Velázquez , M-Antonia Busquets , Joshua Hay , Paul A. Mueller , Sergio Fazio , Carlos J Ciudad , Véronique Noé , Nathalie Pamir
{"title":"Inhibition of PCSK9 with polypurine reverse hoogsteen hairpins: A novel gene therapy approach","authors":"Ester López-Aguilar , Silvia Cecilia Pacheco-Velázquez , M-Antonia Busquets , Joshua Hay , Paul A. Mueller , Sergio Fazio , Carlos J Ciudad , Véronique Noé , Nathalie Pamir","doi":"10.1016/j.bcp.2025.116976","DOIUrl":null,"url":null,"abstract":"<div><div>PCSK9 is a therapeutic target for hypercholesterolemia. Though different strategies to inhibit PCSK9, such as monoclonal antibodies, small molecules, or nucleic acid drugs are available, the need for safer and inexpensive interventions remains. We developed a time-, cost-, and resource- efficient silencing system using Polypurine Reverse Hoogsteen (PPRH) hairpins to target <em>PCSK9</em>. To achieve <em>PCSK9</em> silencing, we designed two PPRHs targeting <em>PCSK9</em> at exon 9 (HpE9) and exon 12 (HpE12). The binding capabilities of PPRHs were measured by EMSA: <em>K</em><sub>d</sub> values were 7.86 x 10<sup>-8</sup> M and 7.58 x 10<sup>-7</sup> M for HpE9 and HpE12, respectively. PPRHs were complexed with the cationic polymer jetPEI forming particles of 167 nm as characterized by Dynamic Light Scattering. <em>PCSK9</em> gene and protein expression was evaluated upon transfections of HepG2 cells with HpE9 and HpE12. PPRHs effectively reduced PCSK9 mRNA levels (63 % and 74 % for HpE9 and HpE12, respectively) and protein (by 76 % and 87 %) at 24 h. Human PCSK9 overexpressing mice receiving a single injection of HpE12 decreased plasma PCSK9 levels by 50 % by day three post injection and levels returned to baseline by day fifteen. Plasma cholesterol levels were reduced by 47 % by day three. Mice receiving the PPRHs did not exhibit changes in body weight, liver enzymes or pro-inflammatory markers when compared to mice injected with jetPEI alone. Therefore, the PPRH technology emerges as an innovative nucleic acid based therapeutic approach that is effective, cost-efficient and easy to develop, for the inhibition of PCSK9.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"238 ","pages":"Article 116976"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295225002382","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
PCSK9 is a therapeutic target for hypercholesterolemia. Though different strategies to inhibit PCSK9, such as monoclonal antibodies, small molecules, or nucleic acid drugs are available, the need for safer and inexpensive interventions remains. We developed a time-, cost-, and resource- efficient silencing system using Polypurine Reverse Hoogsteen (PPRH) hairpins to target PCSK9. To achieve PCSK9 silencing, we designed two PPRHs targeting PCSK9 at exon 9 (HpE9) and exon 12 (HpE12). The binding capabilities of PPRHs were measured by EMSA: Kd values were 7.86 x 10-8 M and 7.58 x 10-7 M for HpE9 and HpE12, respectively. PPRHs were complexed with the cationic polymer jetPEI forming particles of 167 nm as characterized by Dynamic Light Scattering. PCSK9 gene and protein expression was evaluated upon transfections of HepG2 cells with HpE9 and HpE12. PPRHs effectively reduced PCSK9 mRNA levels (63 % and 74 % for HpE9 and HpE12, respectively) and protein (by 76 % and 87 %) at 24 h. Human PCSK9 overexpressing mice receiving a single injection of HpE12 decreased plasma PCSK9 levels by 50 % by day three post injection and levels returned to baseline by day fifteen. Plasma cholesterol levels were reduced by 47 % by day three. Mice receiving the PPRHs did not exhibit changes in body weight, liver enzymes or pro-inflammatory markers when compared to mice injected with jetPEI alone. Therefore, the PPRH technology emerges as an innovative nucleic acid based therapeutic approach that is effective, cost-efficient and easy to develop, for the inhibition of PCSK9.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.