Wenchao Li , Hongfa Wei , Junjie Liu , Zidan Zhao , Fuhui Wang , Liang Qiao , Songcheng Yin , Changhua Zhang , Mingyu Huo
{"title":"Exosomal Biglycan promotes gastric cancer progression via M2 polarization and CXCL10-mediated JAK/STAT1 activation","authors":"Wenchao Li , Hongfa Wei , Junjie Liu , Zidan Zhao , Fuhui Wang , Liang Qiao , Songcheng Yin , Changhua Zhang , Mingyu Huo","doi":"10.1016/j.canlet.2025.217758","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements in tumor immunotherapy have highlighted the importance of the tumor microenvironment in modulating immune responses against cancer cells. Within the TME, macrophages - particularly the M2 phenotype - serve pivotal regulatory functions through cytokine/chemokine secretion to modulate tumor progression. Elucidating the molecular crosstalk between gastric cancer (GC) cells and tumor-associated macrophages (TAMs) remains imperative for developing targeted therapeutic interventions.</div><div>In this study, we identified Biglycan (BGN), a small leucine-rich proteoglycan, as a key mediator in GC progression. Exosomal BGN derived from GC cell is delivered to macrophages, where it binds to NONO protein, thereby driving M2 polarization and upregulating CXCL10 expression. Elevated CXCL10 levels activate the JAK/STAT1 signaling pathways, thereby potentiating GC cell proliferation, invasion, and metastatic dissemination. Clinically, elevated BGN expression correlates with advanced tumor stage and poor prognosis in GC patients, positioning it as a promising therapeutic target.</div><div>Our findings reveal a previously unrecognized mechanism of exosomal BGN-mediated M2 macrophage reprogramming and CXCL10-driven oncogenic signaling in the GC microenvironment. These insights establish a novel therapeutic paradigm for GC management through disruption of tumor-macrophage communication.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"626 ","pages":"Article 217758"},"PeriodicalIF":9.1000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525003246","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in tumor immunotherapy have highlighted the importance of the tumor microenvironment in modulating immune responses against cancer cells. Within the TME, macrophages - particularly the M2 phenotype - serve pivotal regulatory functions through cytokine/chemokine secretion to modulate tumor progression. Elucidating the molecular crosstalk between gastric cancer (GC) cells and tumor-associated macrophages (TAMs) remains imperative for developing targeted therapeutic interventions.
In this study, we identified Biglycan (BGN), a small leucine-rich proteoglycan, as a key mediator in GC progression. Exosomal BGN derived from GC cell is delivered to macrophages, where it binds to NONO protein, thereby driving M2 polarization and upregulating CXCL10 expression. Elevated CXCL10 levels activate the JAK/STAT1 signaling pathways, thereby potentiating GC cell proliferation, invasion, and metastatic dissemination. Clinically, elevated BGN expression correlates with advanced tumor stage and poor prognosis in GC patients, positioning it as a promising therapeutic target.
Our findings reveal a previously unrecognized mechanism of exosomal BGN-mediated M2 macrophage reprogramming and CXCL10-driven oncogenic signaling in the GC microenvironment. These insights establish a novel therapeutic paradigm for GC management through disruption of tumor-macrophage communication.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.