{"title":"Distributed variable screening for generalized linear models","authors":"Tianbo Diao , Bo Li , Lianqiang Qu , Liuquan Sun","doi":"10.1016/j.csda.2025.108203","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we develop a distributed variable screening method for generalized linear models. This method is designed to handle situations where both the sample size and the number of covariates are large. Specifically, the proposed method selects relevant covariates by using a sparsity-restricted surrogate likelihood estimator. It takes into account the joint effects of the covariates rather than just the marginal effect, and this characteristic enhances the reliability of the screening results. We establish the sure screening property of the proposed method, which ensures that with a high probability, the true model is included in the selected model. Simulation studies are conducted to evaluate the finite sample performance of the proposed method, and an application to a real dataset showcases its practical utility.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"211 ","pages":"Article 108203"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000799","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we develop a distributed variable screening method for generalized linear models. This method is designed to handle situations where both the sample size and the number of covariates are large. Specifically, the proposed method selects relevant covariates by using a sparsity-restricted surrogate likelihood estimator. It takes into account the joint effects of the covariates rather than just the marginal effect, and this characteristic enhances the reliability of the screening results. We establish the sure screening property of the proposed method, which ensures that with a high probability, the true model is included in the selected model. Simulation studies are conducted to evaluate the finite sample performance of the proposed method, and an application to a real dataset showcases its practical utility.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]