Generalized Alexandrov theorems in spacetimes with integral conditions

IF 0.7 4区 数学 Q3 MATHEMATICS
Kwok-Kun Kwong , Xianfeng Wang
{"title":"Generalized Alexandrov theorems in spacetimes with integral conditions","authors":"Kwok-Kun Kwong ,&nbsp;Xianfeng Wang","doi":"10.1016/j.difgeo.2025.102254","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate integral conditions involving the mean curvature vector <span><math><mover><mrow><mi>H</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span> or mixed higher-order mean curvatures, to determine when a codimension-two submanifold Σ lies on a shear-free (umbilical) null hypersurface in a spacetime. We generalize the Alexandrov-type theorems in spacetime introduced in <span><span>[18]</span></span> by relaxing the curvature conditions on Σ in several aspects. Specifically, we provide a necessary and sufficient condition, in terms of a mean curvature integral inequality, for Σ to lie in a shear-free null hypersurface. A key component of our approach is the use of Minkowski formulas with arbitrary weight, which enables us to derive rigidity results for submanifolds with significantly weaker integral curvature conditions.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"100 ","pages":"Article 102254"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000294","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate integral conditions involving the mean curvature vector H or mixed higher-order mean curvatures, to determine when a codimension-two submanifold Σ lies on a shear-free (umbilical) null hypersurface in a spacetime. We generalize the Alexandrov-type theorems in spacetime introduced in [18] by relaxing the curvature conditions on Σ in several aspects. Specifically, we provide a necessary and sufficient condition, in terms of a mean curvature integral inequality, for Σ to lie in a shear-free null hypersurface. A key component of our approach is the use of Minkowski formulas with arbitrary weight, which enables us to derive rigidity results for submanifolds with significantly weaker integral curvature conditions.
具有积分条件的时空中的广义Alexandrov定理
我们研究了涉及平均曲率向量H→或混合高阶平均曲率的积分条件,以确定一个协维二子流形Σ何时位于时空中无剪切(脐带)零超曲面上。我们通过放宽Σ上的曲率条件,从几个方面推广了[18]中引入的时空中的alexandrov型定理。具体地说,我们用平均曲率积分不等式给出了Σ位于无剪切零超曲面的充分必要条件。我们方法的一个关键组成部分是使用具有任意权值的闵可夫斯基公式,它使我们能够推导出具有明显较弱积分曲率条件的子流形的刚度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信