JHN-Seg: Multi-scale vascular segmentation via Joint Hierarchical Morphology learning and noisy label refinement

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhiyong Zhou , Zheyuan Zhang , Jisu Hu , Yudong Zhang , Xianhai Mao , Chen Geng , Xusheng Qian , Bo Peng , Bin Dai , Yakang Dai
{"title":"JHN-Seg: Multi-scale vascular segmentation via Joint Hierarchical Morphology learning and noisy label refinement","authors":"Zhiyong Zhou ,&nbsp;Zheyuan Zhang ,&nbsp;Jisu Hu ,&nbsp;Yudong Zhang ,&nbsp;Xianhai Mao ,&nbsp;Chen Geng ,&nbsp;Xusheng Qian ,&nbsp;Bo Peng ,&nbsp;Bin Dai ,&nbsp;Yakang Dai","doi":"10.1016/j.eswa.2025.128096","DOIUrl":null,"url":null,"abstract":"<div><div>Vascular segmentation is essential for various medical applications, such as computer-aided diagnosis, treatment planning, and surgical interventions. However, current deep learning-based vascular segmentation methods face two significant challenges: the complex morphological diversity of vascular structures, which results in discontinuous segmentation in small-scale vessels and incomplete preservation of topological integrity, and the adverse effects of noisy labels during network optimization. To address these challenges, we propose a Joint Hierarchical Vascular Morphology Learning and Noise Label Refinement method (JHN-Seg). JHN-Seg introduces a Hierarchical Vascular Morphology-Aware Network (HVMA-Net) that integrates a Multi-Scale Local Morphology-Aware (MLMA) module, employing a multi-pattern convolutional strategy to adaptively capture intricate vascular features across scales. A Global Morphology Preserving (GMP) loss function is incorporated into HVMA-Net to enforce the continuity of small-scale vessels and maintain the integrality of global vascular structures. Furthermore, JHN-Seg introduces an Uncertainty-Aware Distillation (UD) strategy, which incorporates an Uncertainty Label Refinement (ULR) Module for uncertainty-guided noisy label correction by leveraging pixel-wise KL divergence and consistency generated by teacher-student framework. Comprehensive experiments on liver vessel datasets demonstrate that JHN-Seg outperforms other state-of-the-art segmentation methods. The framework’s adaptability and performance advancements position it as a transformative solution for vascular segmentation and broad applicability to medical image analysis tasks requiring precise morphological representation and noise-robust learning.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"285 ","pages":"Article 128096"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425017178","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Vascular segmentation is essential for various medical applications, such as computer-aided diagnosis, treatment planning, and surgical interventions. However, current deep learning-based vascular segmentation methods face two significant challenges: the complex morphological diversity of vascular structures, which results in discontinuous segmentation in small-scale vessels and incomplete preservation of topological integrity, and the adverse effects of noisy labels during network optimization. To address these challenges, we propose a Joint Hierarchical Vascular Morphology Learning and Noise Label Refinement method (JHN-Seg). JHN-Seg introduces a Hierarchical Vascular Morphology-Aware Network (HVMA-Net) that integrates a Multi-Scale Local Morphology-Aware (MLMA) module, employing a multi-pattern convolutional strategy to adaptively capture intricate vascular features across scales. A Global Morphology Preserving (GMP) loss function is incorporated into HVMA-Net to enforce the continuity of small-scale vessels and maintain the integrality of global vascular structures. Furthermore, JHN-Seg introduces an Uncertainty-Aware Distillation (UD) strategy, which incorporates an Uncertainty Label Refinement (ULR) Module for uncertainty-guided noisy label correction by leveraging pixel-wise KL divergence and consistency generated by teacher-student framework. Comprehensive experiments on liver vessel datasets demonstrate that JHN-Seg outperforms other state-of-the-art segmentation methods. The framework’s adaptability and performance advancements position it as a transformative solution for vascular segmentation and broad applicability to medical image analysis tasks requiring precise morphological representation and noise-robust learning.
基于联合层次形态学学习和噪声标签改进的多尺度血管分割
血管分割在许多医学应用中是必不可少的,例如计算机辅助诊断、治疗计划和外科干预。然而,目前基于深度学习的血管分割方法面临两大挑战:一是血管结构的复杂形态多样性,导致小血管的分割不连续,拓扑完整性保存不完整;二是网络优化过程中噪声标签的不利影响。为了解决这些挑战,我们提出了一种联合分层血管形态学习和噪声标签改进方法(JHN-Seg)。JHN-Seg介绍了一种分层血管形态感知网络(HVMA-Net),该网络集成了多尺度局部形态感知(MLMA)模块,采用多模式卷积策略自适应捕获跨尺度复杂的血管特征。在HVMA-Net中加入了全局形态学保存(GMP)损失函数,以加强小血管的连续性并保持全局血管结构的完整性。此外,JHN-Seg引入了一种不确定性感知蒸馏(UD)策略,该策略结合了一个不确定性标签细化(ULR)模块,通过利用由师生框架产生的像素级KL散度和一致性来进行不确定性引导的噪声标签校正。在肝血管数据集上的综合实验表明,JHN-Seg优于其他最先进的分割方法。该框架的适应性和性能进步使其成为血管分割的变革性解决方案,并广泛适用于需要精确形态表示和噪声鲁棒学习的医学图像分析任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信