A Light-Responsive Metal–Organic Framework with Perchlorinated Nanographene Ligands

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xin Zheng, Nikita Gupta, Haiying He, Jasleen K. Bindra, Subharaj Hossain, Juan P. Vizuet, Atefeh Nadeali, Danial Zangeneh, Roushan Prakash Singh, Robert F. Klie, Brian P. Chaplin, Kenneth Brezinsky, Oleg G. Poluektov, Jens Niklas, Peter Zapol and Ksenija D. Glusac*, 
{"title":"A Light-Responsive Metal–Organic Framework with Perchlorinated Nanographene Ligands","authors":"Xin Zheng,&nbsp;Nikita Gupta,&nbsp;Haiying He,&nbsp;Jasleen K. Bindra,&nbsp;Subharaj Hossain,&nbsp;Juan P. Vizuet,&nbsp;Atefeh Nadeali,&nbsp;Danial Zangeneh,&nbsp;Roushan Prakash Singh,&nbsp;Robert F. Klie,&nbsp;Brian P. Chaplin,&nbsp;Kenneth Brezinsky,&nbsp;Oleg G. Poluektov,&nbsp;Jens Niklas,&nbsp;Peter Zapol and Ksenija D. Glusac*,&nbsp;","doi":"10.1021/jacs.5c0284410.1021/jacs.5c02844","DOIUrl":null,"url":null,"abstract":"<p >Harnessing water as a sustainable electron source for artificial photosynthesis remains a significant challenge. This work presents <b>Alice-MOF-1</b>, a novel zirconium metal–organic framework (MOF) incorporating hexatopic ligands with a perchlorinated hexa-<i>peri</i>-hexabenzocoronene (HBC) core, as a photocatalyst for CO<sub>2</sub> reduction using water as the terminal electron donor. Contortion of the ligand, induced by edge chlorination, minimizes π-stacking and enhances solubility, enabling direct MOF synthesis. The controlled arrangement of chromophores within <b>Alice-MOF-1</b> is crucial for enabling the complex multielectron redox reactions. The unique ligand architecture within the MOF promotes symmetry-breaking charge transfer (SBCT), a mechanism observed in natural photosynthesis, leading to efficient charge separation with minimal energy loss. Femtosecond transient absorption spectroscopy and time-resolved electron paramagnetic resonance spectroscopy (EPR) confirm the formation of long-lived radical ions, providing direct evidence for efficient SBCT and negligible charge recombination. These findings demonstrate the power of MOF-based chromophore assemblies to mimic nature’s light-harvesting strategies for sustainable energy conversion.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 19","pages":"16420–16428 16420–16428"},"PeriodicalIF":15.6000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c02844","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Harnessing water as a sustainable electron source for artificial photosynthesis remains a significant challenge. This work presents Alice-MOF-1, a novel zirconium metal–organic framework (MOF) incorporating hexatopic ligands with a perchlorinated hexa-peri-hexabenzocoronene (HBC) core, as a photocatalyst for CO2 reduction using water as the terminal electron donor. Contortion of the ligand, induced by edge chlorination, minimizes π-stacking and enhances solubility, enabling direct MOF synthesis. The controlled arrangement of chromophores within Alice-MOF-1 is crucial for enabling the complex multielectron redox reactions. The unique ligand architecture within the MOF promotes symmetry-breaking charge transfer (SBCT), a mechanism observed in natural photosynthesis, leading to efficient charge separation with minimal energy loss. Femtosecond transient absorption spectroscopy and time-resolved electron paramagnetic resonance spectroscopy (EPR) confirm the formation of long-lived radical ions, providing direct evidence for efficient SBCT and negligible charge recombination. These findings demonstrate the power of MOF-based chromophore assemblies to mimic nature’s light-harvesting strategies for sustainable energy conversion.

Abstract Image

具有高氯化纳米石墨烯配体的光响应金属-有机骨架
利用水作为人工光合作用的可持续电子源仍然是一个重大挑战。Alice-MOF-1是一种新型的锆金属有机骨架(MOF),包含六配体和高氯化六-六苯并二烯(HBC)核心,作为CO2还原的光催化剂,以水为终端电子供体。由边缘氯化引起的配体扭曲使π堆积最小化,提高了溶解度,使直接合成MOF成为可能。Alice-MOF-1中发色团的可控排列对于实现复杂的多电子氧化还原反应至关重要。MOF中独特的配体结构促进了对称破缺电荷转移(SBCT),这是一种在自然光合作用中观察到的机制,可以在最小的能量损失下实现有效的电荷分离。飞秒瞬态吸收光谱和时间分辨电子顺磁共振光谱(EPR)证实了长寿命自由基离子的形成,为有效的SBCT和可忽略的电荷重组提供了直接证据。这些发现证明了基于mof的发色团组件在模拟自然的光收集策略以实现可持续的能量转换方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信