Manon Bayet, Vincent Fregona, Mathieu Bouttier, Clémence Rouzier, Jérémy Bigot, Laura Jamrog, Sylvie Hebrard, Naïs Prade, Stéphanie Lagarde, Christine Didier, Stéphanie Gachet, Marie Passet, Laetitia Largeaud, Marlène Pasquet, Ahmed Amine Khamlichi, Emmanuelle Clappier, Eric Delabesse, Cyril Broccardo, Bastien Gerby
{"title":"Modeling the PAX5P80R Mutation Reveals HIF2α Activation as a Common Feature and Therapeutic Target in B-Cell Acute Lymphoblastic Leukemia","authors":"Manon Bayet, Vincent Fregona, Mathieu Bouttier, Clémence Rouzier, Jérémy Bigot, Laura Jamrog, Sylvie Hebrard, Naïs Prade, Stéphanie Lagarde, Christine Didier, Stéphanie Gachet, Marie Passet, Laetitia Largeaud, Marlène Pasquet, Ahmed Amine Khamlichi, Emmanuelle Clappier, Eric Delabesse, Cyril Broccardo, Bastien Gerby","doi":"10.1158/0008-5472.can-24-1698","DOIUrl":null,"url":null,"abstract":"The transcription factor PAX5 is a major target of genetic alterations in human B-cell precursor acute lymphoblastic leukemia (B-ALL). Among the alterations, the P80R mutation affecting the DNA-binding domain represents the most frequent PAX5 point mutation in B-ALL. In contrast to other somatic PAX5 mutations, PAX5P80R defines a distinct B-ALL subtype characterized by a unique transcriptional program. Here, we aimed to develop a model to elucidate the mechanism by which PAX5P80R perturbs normal B-cell differentiation and the oncogenic relays involved in PAX5P80R-driven malignant progression. A retroviral complementation approach of Pax5-deficient murine fetal liver cells demonstrated at the functional and molecular levels that PAX5P80R failed to rescue definitive B-cell commitment but maintained the repression of T-cell development. Moreover, PAX5P80R eventually led to clonal B-ALL transformation after transplantation through the acquisition of secondary mutations in genes involved in the JAK/STAT and RAS/MAPK pathways. Finally, transcriptomic analyses combined with pharmacological investigation revealed ectopic activation of HIF2α as a common feature of B-ALL and identified acriflavine as a potent drug against B-ALL. Hence, this study provides a strategy to model the multistep process of B-ALL and sheds light on the biological mechanism by which the PAX5P80R mutation leads to leukemia.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"124 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-1698","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The transcription factor PAX5 is a major target of genetic alterations in human B-cell precursor acute lymphoblastic leukemia (B-ALL). Among the alterations, the P80R mutation affecting the DNA-binding domain represents the most frequent PAX5 point mutation in B-ALL. In contrast to other somatic PAX5 mutations, PAX5P80R defines a distinct B-ALL subtype characterized by a unique transcriptional program. Here, we aimed to develop a model to elucidate the mechanism by which PAX5P80R perturbs normal B-cell differentiation and the oncogenic relays involved in PAX5P80R-driven malignant progression. A retroviral complementation approach of Pax5-deficient murine fetal liver cells demonstrated at the functional and molecular levels that PAX5P80R failed to rescue definitive B-cell commitment but maintained the repression of T-cell development. Moreover, PAX5P80R eventually led to clonal B-ALL transformation after transplantation through the acquisition of secondary mutations in genes involved in the JAK/STAT and RAS/MAPK pathways. Finally, transcriptomic analyses combined with pharmacological investigation revealed ectopic activation of HIF2α as a common feature of B-ALL and identified acriflavine as a potent drug against B-ALL. Hence, this study provides a strategy to model the multistep process of B-ALL and sheds light on the biological mechanism by which the PAX5P80R mutation leads to leukemia.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.