Yu-San Kao, Mario Lauterbach, Aleksandra Lopez Krol, Ute Distler, Gloria Janet Godoy, Matthias Klein, Rafael Jose Argüello, Fatima Boukhallouk, Sara Vallejo Fuente, Kathrin Luise Braband, Assel Nurbekova, Monica Romero, Panagiota Mamareli, Luana Silva, Luis Eduardo Alves Damasceno, Francesca Rampoldi, Luciana Berod, Lydia Lynch, Karsten Hiller, Tim Sparwasser
{"title":"Metabolic reprogramming of interleukin-17-producing γδ T cells promotes ACC1-mediated de novo lipogenesis under psoriatic conditions","authors":"Yu-San Kao, Mario Lauterbach, Aleksandra Lopez Krol, Ute Distler, Gloria Janet Godoy, Matthias Klein, Rafael Jose Argüello, Fatima Boukhallouk, Sara Vallejo Fuente, Kathrin Luise Braband, Assel Nurbekova, Monica Romero, Panagiota Mamareli, Luana Silva, Luis Eduardo Alves Damasceno, Francesca Rampoldi, Luciana Berod, Lydia Lynch, Karsten Hiller, Tim Sparwasser","doi":"10.1038/s42255-025-01276-z","DOIUrl":null,"url":null,"abstract":"<p>Metabolic reprogramming determines γδ T cell fate during thymic development; however, the metabolic requirements of interleukin (IL)-17A-producing γδ T cells (γδT17 cells) under psoriatic conditions are unclear. Combining high-throughput techniques, including RNA sequencing, SCENITH, proteomics and stable isotope tracing, we demonstrated that psoriatic inflammation caused γδT17 cells to switch toward aerobic glycolysis. Under psoriatic conditions, γδT17 cells upregulated ATP-citrate synthase to convert citrate to acetyl-CoA, linking carbohydrate metabolism and fatty acid synthesis (FAS). Accordingly, we used a pharmacological inhibitor, Soraphen A, which blocks acetyl-CoA carboxylase (ACC), to impair FAS in γδT17 cells, reducing their intracellular lipid stores and ability to produce IL-17A under psoriatic conditions in vitro. We pinpointed the pathogenic role of ACC1 in γδT17 cells in vivo by genetic ablation, ameliorating inflammation in a psoriatic mouse model. Furthermore, ACC inhibition limited human IL-17A-producing γδT17 cells. Targeting ACC1 to attenuate pathogenic γδT17 cell function has important implications for psoriasis management.</p>","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"55 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s42255-025-01276-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic reprogramming determines γδ T cell fate during thymic development; however, the metabolic requirements of interleukin (IL)-17A-producing γδ T cells (γδT17 cells) under psoriatic conditions are unclear. Combining high-throughput techniques, including RNA sequencing, SCENITH, proteomics and stable isotope tracing, we demonstrated that psoriatic inflammation caused γδT17 cells to switch toward aerobic glycolysis. Under psoriatic conditions, γδT17 cells upregulated ATP-citrate synthase to convert citrate to acetyl-CoA, linking carbohydrate metabolism and fatty acid synthesis (FAS). Accordingly, we used a pharmacological inhibitor, Soraphen A, which blocks acetyl-CoA carboxylase (ACC), to impair FAS in γδT17 cells, reducing their intracellular lipid stores and ability to produce IL-17A under psoriatic conditions in vitro. We pinpointed the pathogenic role of ACC1 in γδT17 cells in vivo by genetic ablation, ameliorating inflammation in a psoriatic mouse model. Furthermore, ACC inhibition limited human IL-17A-producing γδT17 cells. Targeting ACC1 to attenuate pathogenic γδT17 cell function has important implications for psoriasis management.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.