Dynamic Cooperative Whale Optimization Algorithm for Multivehicle IoV Path Planning

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Wenbiao Yang;Wenli Shang;Zhiquan Liu
{"title":"Dynamic Cooperative Whale Optimization Algorithm for Multivehicle IoV Path Planning","authors":"Wenbiao Yang;Wenli Shang;Zhiquan Liu","doi":"10.1109/JIOT.2025.3568839","DOIUrl":null,"url":null,"abstract":"The Internet of Vehicles (IoV) presents significant challenges for path planning algorithms in dynamic traffic environments. This article proposes the Dynamic Cooperative Whale Optimization Algorithm (DCWOA) for multivehicle path planning in IoV. DCWOA enhances the Whale Optimization Algorithm with a three-layer structure (Individual, Group, and Group Cooperation) to optimize from local to global scope. Key innovations include: 1) a dynamic adjustment factor combining improved encircling and spiral update mechanisms; 2) local and global cooperation mechanisms enabling coordinated planning through vehicle communications; and 3) a multiobjective weighted decision model integrating travel time, fuel consumption, safety, and emissions. Comparisons with five state-of-the-art algorithms (WOA, MEWOA, PSBES, MGO, DGCO) on the CEC2017 benchmark suite show DCWOA achieving optimal performance in 27–29 of 30 test functions. In IoV environments, DCWOA demonstrates 36% improvement in optimization efficiency at 60% traffic density and reduces travel time by 21%–26%. During unexpected events, DCWOA achieves 7-s path adjustment time with 100% success rate, outperforming comparison algorithms’ 12–28 s and 65%–85%. The code is available at: <uri>https://github.com/yangwb02/MVPP-DCWOA</uri>.","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":"12 15","pages":"29844-29859"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10998954/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Vehicles (IoV) presents significant challenges for path planning algorithms in dynamic traffic environments. This article proposes the Dynamic Cooperative Whale Optimization Algorithm (DCWOA) for multivehicle path planning in IoV. DCWOA enhances the Whale Optimization Algorithm with a three-layer structure (Individual, Group, and Group Cooperation) to optimize from local to global scope. Key innovations include: 1) a dynamic adjustment factor combining improved encircling and spiral update mechanisms; 2) local and global cooperation mechanisms enabling coordinated planning through vehicle communications; and 3) a multiobjective weighted decision model integrating travel time, fuel consumption, safety, and emissions. Comparisons with five state-of-the-art algorithms (WOA, MEWOA, PSBES, MGO, DGCO) on the CEC2017 benchmark suite show DCWOA achieving optimal performance in 27–29 of 30 test functions. In IoV environments, DCWOA demonstrates 36% improvement in optimization efficiency at 60% traffic density and reduces travel time by 21%–26%. During unexpected events, DCWOA achieves 7-s path adjustment time with 100% success rate, outperforming comparison algorithms’ 12–28 s and 65%–85%. The code is available at: https://github.com/yangwb02/MVPP-DCWOA.
多车车联网路径规划的动态协同鲸优化算法
车联网(IoV)对动态交通环境下的路径规划算法提出了重大挑战。提出了一种用于车联网多车路径规划的动态协同鲸优化算法(DCWOA)。DCWOA对Whale优化算法进行了改进,采用三层结构(个体、群体和群体合作),从局部到全局进行优化。关键创新包括:1)结合改进的环绕和螺旋更新机制的动态调整因子;2)通过车辆通信实现协调规划的地方和全球合作机制;3)综合出行时间、油耗、安全和排放的多目标加权决策模型。在CEC2017基准测试套件上与五种最先进的算法(WOA、MEWOA、PSBES、MGO、DGCO)进行比较表明,DCWOA在30个测试功能中的27-29个中达到了最佳性能。在车联网环境中,当交通密度为60%时,DCWOA的优化效率提高了36%,出行时间减少了21%-26%。在突发事件发生时,DCWOA的路径调整时间为7-s,成功率为100%,优于比较算法的12-28 s和65%-85%。代码可从https://github.com/yangwb02/MVPP-DCWOA获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Internet of Things Journal
IEEE Internet of Things Journal Computer Science-Information Systems
CiteScore
17.60
自引率
13.20%
发文量
1982
期刊介绍: The EEE Internet of Things (IoT) Journal publishes articles and review articles covering various aspects of IoT, including IoT system architecture, IoT enabling technologies, IoT communication and networking protocols such as network coding, and IoT services and applications. Topics encompass IoT's impacts on sensor technologies, big data management, and future internet design for applications like smart cities and smart homes. Fields of interest include IoT architecture such as things-centric, data-centric, service-oriented IoT architecture; IoT enabling technologies and systematic integration such as sensor technologies, big sensor data management, and future Internet design for IoT; IoT services, applications, and test-beds such as IoT service middleware, IoT application programming interface (API), IoT application design, and IoT trials/experiments; IoT standardization activities and technology development in different standard development organizations (SDO) such as IEEE, IETF, ITU, 3GPP, ETSI, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信