Amir Dehghani, Ghazal Geshnizjani and Jerome Quintin
{"title":"Cuscuton bounce beyond the linear regime: bispectrum and strong coupling constraints","authors":"Amir Dehghani, Ghazal Geshnizjani and Jerome Quintin","doi":"10.1088/1475-7516/2025/05/026","DOIUrl":null,"url":null,"abstract":"Cuscuton Gravity is characterized as a scalar field that can be added to general relativity without introducing any new dynamical degrees of freedom on a cosmological background. Yet, it modifies gravity such that spacetime singularities can be avoided. This has led to the Cuscuton bounce, a nonsingular cosmology that has been shown to be linearly stable, which is a rare feat. Upon introducing mechanisms known to generate a near-scale-invariant power spectrum of isocurvature perturbations in the prebounce contracting phase, we perform an extensive linear analysis of all scalar perturbations as they evolve through the Cuscuton bounce, both analytically and numerically. Then, after deriving the third-order perturbed action for our theory, we compare the magnitude of its terms (on shell) to those in the second-order action. We show that perturbativity is maintained in the infrared throughout the evolution, including through the bounce. In the ultraviolet, we show that a hierarchy of scales is maintained, with the strong coupling scale well above the relevant background energy scale at all times. We reconfirm these results by computing the three-point functions in various limits and demonstrate that the models do not have any strong coupling problems and furthermore that there is negligible non-Gaussianities on observable scales. Consequently, the primary potential source of observable non-Gaussianities may only arise from the conversion of isocurvature perturbations to curvature perturbations. The whole scenario is thus a robust, stable, weakly coupled nonsingular cosmological model, consistent with observations.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"124 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/05/026","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cuscuton Gravity is characterized as a scalar field that can be added to general relativity without introducing any new dynamical degrees of freedom on a cosmological background. Yet, it modifies gravity such that spacetime singularities can be avoided. This has led to the Cuscuton bounce, a nonsingular cosmology that has been shown to be linearly stable, which is a rare feat. Upon introducing mechanisms known to generate a near-scale-invariant power spectrum of isocurvature perturbations in the prebounce contracting phase, we perform an extensive linear analysis of all scalar perturbations as they evolve through the Cuscuton bounce, both analytically and numerically. Then, after deriving the third-order perturbed action for our theory, we compare the magnitude of its terms (on shell) to those in the second-order action. We show that perturbativity is maintained in the infrared throughout the evolution, including through the bounce. In the ultraviolet, we show that a hierarchy of scales is maintained, with the strong coupling scale well above the relevant background energy scale at all times. We reconfirm these results by computing the three-point functions in various limits and demonstrate that the models do not have any strong coupling problems and furthermore that there is negligible non-Gaussianities on observable scales. Consequently, the primary potential source of observable non-Gaussianities may only arise from the conversion of isocurvature perturbations to curvature perturbations. The whole scenario is thus a robust, stable, weakly coupled nonsingular cosmological model, consistent with observations.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.