Martín Arteaga, Anish Ghoshal and Alessandro Strumia
{"title":"Gravitational waves and black holes from the phase transition in models of dynamical symmetry breaking","authors":"Martín Arteaga, Anish Ghoshal and Alessandro Strumia","doi":"10.1088/1475-7516/2025/05/029","DOIUrl":null,"url":null,"abstract":"Theories of dynamical electroweak symmetry breaking predict a strong first order cosmological phase transition: we compute the resulting signals, primordial black holes and gravitational waves. These theories employ one SM-neutral scalar, plus some extra model-dependent particle to get the desired quantum potential out of classical scale invariance. We consider models where the extra particle is a scalar singlet, or vectors of an extended U(1) or SU(2) gauge sector. In models where the extra particle is stable, it provides a particle Dark Matter candidate with freeze-out abundance that tends to dominate over primordial black holes. These can instead be DM in models without a particle DM candidate. Gravitational waves arise at a level observable in future searches, even in regions where DM cannot be directly tested.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"6 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/05/029","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Theories of dynamical electroweak symmetry breaking predict a strong first order cosmological phase transition: we compute the resulting signals, primordial black holes and gravitational waves. These theories employ one SM-neutral scalar, plus some extra model-dependent particle to get the desired quantum potential out of classical scale invariance. We consider models where the extra particle is a scalar singlet, or vectors of an extended U(1) or SU(2) gauge sector. In models where the extra particle is stable, it provides a particle Dark Matter candidate with freeze-out abundance that tends to dominate over primordial black holes. These can instead be DM in models without a particle DM candidate. Gravitational waves arise at a level observable in future searches, even in regions where DM cannot be directly tested.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.