{"title":"cGAS/STING-Independent Induction of Type I Interferon by Inhibitors of the Histone Methylase KDM5B","authors":"Monica M. Montano, I-Ju Yeh, Wannarasmi Ketchart","doi":"10.1096/fj.202500628R","DOIUrl":null,"url":null,"abstract":"<p>Studies support the role of hexamethylene bis-acetamide [HMBA] induced protein 1 (HEXIM1) as a tumor suppressor. We previously reported that the histone demethylase, KDM5B, inhibits the expression of HEXIM1, and KDM5B inhibitors (KDM5Bi) upregulate HEXIM1 expression. As a consequence, KDM5Bi inhibited cell proliferation, induced differentiation, potentiated sensitivity to cancer chemotherapy, and inhibited breast tumor metastasis. HEXIM1 is crucial for the regulation of triple-negative breast cancer (TNBC) phenotype by KDM5Bi. Type I Interferon (IFN-I) employs the immune system in the tumor microenvironment to restrict tumor growth. Moreover, therapeutic approaches (including mainstay chemotherapy) engage IFN-I signaling. We report herein that HEXIM1 and KDM5Bi induce IFN-I in TNBC. HEXIM1 and KDM5Bi downregulate the expression of polyribonucleotide nucleotidyltransferase 1 (PNPT1) resulting in the release of mitochondrial dsRNA (mt-dsRNA) into the cytoplasm. HEXIM1 also upregulates melanoma differentiation-associated protein 5 (MDA5), a cytoplasmic viral RNA receptor in the innate immune system. MDA5 is required for HEXIM1 and KDM5Bi to induce IFN-I and downstream signaling factors. We observed the augmentation of DNA damage response to Doxorubicin in the presence of KDM5Bi, and this action is a contributing factor in KDM5Bi-induced IFN-I. These actions of HEXIM1 and KDM5Bi occur independently of Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (cGAS/STING), a major DNA sensing pathway and inducer of innate immunity. Via the upregulation of HEXIM1, KDM5Bi represent pharmacologically induced and tumor intrinsic IFN-I production that is cGAS/STING independent. This is critical because cGAS/STING induce an inflammatory response that promotes the survival of cancer cells, and STING is often impaired in malignant cancers.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202500628R","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202500628R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Studies support the role of hexamethylene bis-acetamide [HMBA] induced protein 1 (HEXIM1) as a tumor suppressor. We previously reported that the histone demethylase, KDM5B, inhibits the expression of HEXIM1, and KDM5B inhibitors (KDM5Bi) upregulate HEXIM1 expression. As a consequence, KDM5Bi inhibited cell proliferation, induced differentiation, potentiated sensitivity to cancer chemotherapy, and inhibited breast tumor metastasis. HEXIM1 is crucial for the regulation of triple-negative breast cancer (TNBC) phenotype by KDM5Bi. Type I Interferon (IFN-I) employs the immune system in the tumor microenvironment to restrict tumor growth. Moreover, therapeutic approaches (including mainstay chemotherapy) engage IFN-I signaling. We report herein that HEXIM1 and KDM5Bi induce IFN-I in TNBC. HEXIM1 and KDM5Bi downregulate the expression of polyribonucleotide nucleotidyltransferase 1 (PNPT1) resulting in the release of mitochondrial dsRNA (mt-dsRNA) into the cytoplasm. HEXIM1 also upregulates melanoma differentiation-associated protein 5 (MDA5), a cytoplasmic viral RNA receptor in the innate immune system. MDA5 is required for HEXIM1 and KDM5Bi to induce IFN-I and downstream signaling factors. We observed the augmentation of DNA damage response to Doxorubicin in the presence of KDM5Bi, and this action is a contributing factor in KDM5Bi-induced IFN-I. These actions of HEXIM1 and KDM5Bi occur independently of Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (cGAS/STING), a major DNA sensing pathway and inducer of innate immunity. Via the upregulation of HEXIM1, KDM5Bi represent pharmacologically induced and tumor intrinsic IFN-I production that is cGAS/STING independent. This is critical because cGAS/STING induce an inflammatory response that promotes the survival of cancer cells, and STING is often impaired in malignant cancers.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.