De Novo Design of HIV-1 Integrase-LEDGF/p75 Inhibitors Through Deep Reinforcement Learning and Virtual Screening

IF 2.3 4区 化学 Q1 SOCIAL WORK
Hai-Bo Sun, Hai-Long Wu, Tong Wang, An-Qi Chen, Ru-Qin Yu
{"title":"De Novo Design of HIV-1 Integrase-LEDGF/p75 Inhibitors Through Deep Reinforcement Learning and Virtual Screening","authors":"Hai-Bo Sun,&nbsp;Hai-Long Wu,&nbsp;Tong Wang,&nbsp;An-Qi Chen,&nbsp;Ru-Qin Yu","doi":"10.1002/cem.70037","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Human immunodeficiency virus (HIV) has far-reaching impacts on global public health. Acquired immunodeficiency syndrome (AIDS) has caused millions of deaths globally, with thousands still getting infected. Therefore, developing HIV-1 integrase inhibitors is crucial for controlling AIDS by slowing virus replication and transmission. This study is grounded in the framework of deep reinforcement learning, aiming to de novo design inhibitors of HIV-1 integrase-Lens Epithelial-Derived Growth Factor/p75 interaction and subsequently employing molecular docking to screen potential therapeutic compounds. Initially, a molecular generation model was established based on the long short-term memory algorithm and refined through transfer learning to obtain a preliminary generative model. Subsequently, the deep reinforcement learning strategy was employed, using inhibition activity as a reward value, enabling the model more likely to generate molecules with desirable properties. The results indicate that the reinforced generation model not only generates novel and effective SMILES structures with medicinal potential but also demonstrates strong binding affinity between the generated molecules and the target protein, as indicated by molecular docking experiments. Ultimately, through virtual screening, we identified six lead compounds having the potential to become inhibitors of interaction between Lens Epithelial-Derived Growth Factor/p75 and HIV-1 integrase, providing an effective and practical strategy for de novo drug design of HIV-1 integrase inhibitors.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.70037","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

Abstract

Human immunodeficiency virus (HIV) has far-reaching impacts on global public health. Acquired immunodeficiency syndrome (AIDS) has caused millions of deaths globally, with thousands still getting infected. Therefore, developing HIV-1 integrase inhibitors is crucial for controlling AIDS by slowing virus replication and transmission. This study is grounded in the framework of deep reinforcement learning, aiming to de novo design inhibitors of HIV-1 integrase-Lens Epithelial-Derived Growth Factor/p75 interaction and subsequently employing molecular docking to screen potential therapeutic compounds. Initially, a molecular generation model was established based on the long short-term memory algorithm and refined through transfer learning to obtain a preliminary generative model. Subsequently, the deep reinforcement learning strategy was employed, using inhibition activity as a reward value, enabling the model more likely to generate molecules with desirable properties. The results indicate that the reinforced generation model not only generates novel and effective SMILES structures with medicinal potential but also demonstrates strong binding affinity between the generated molecules and the target protein, as indicated by molecular docking experiments. Ultimately, through virtual screening, we identified six lead compounds having the potential to become inhibitors of interaction between Lens Epithelial-Derived Growth Factor/p75 and HIV-1 integrase, providing an effective and practical strategy for de novo drug design of HIV-1 integrase inhibitors.

基于深度强化学习和虚拟筛选的HIV-1整合酶- ledgf /p75抑制剂从头设计
人类免疫缺陷病毒(HIV)对全球公共卫生产生深远影响。获得性免疫缺陷综合症(艾滋病)已在全球造成数百万人死亡,仍有数千人受到感染。因此,开发HIV-1整合酶抑制剂对于通过减缓病毒复制和传播来控制艾滋病至关重要。本研究基于深度强化学习的框架,旨在重新设计HIV-1整合酶-晶状体上皮衍生生长因子/p75相互作用的抑制剂,并随后采用分子对接来筛选潜在的治疗化合物。首先,基于长短期记忆算法建立分子生成模型,并通过迁移学习进行细化,得到初步的生成模型。随后,采用深度强化学习策略,使用抑制活性作为奖励值,使模型更有可能生成具有理想特性的分子。结果表明,通过分子对接实验,增强生成模型不仅生成了具有药用潜力的新颖有效的smile结构,而且生成的分子与靶蛋白之间具有较强的结合亲和力。最终,通过虚拟筛选,我们确定了六种先导化合物,它们有可能成为晶状体上皮衍生生长因子/p75与HIV-1整合酶之间相互作用的抑制剂,为HIV-1整合酶抑制剂的新药物设计提供了有效和实用的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信