Geotectonic Identity of Cretaceous-Paleogene Granitoids in the Tsukuba Igneous Complex, Japan: A New Multi-Proxy Reassessment

IF 1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY
Island Arc Pub Date : 2025-05-12 DOI:10.1111/iar.70015
Wataru Fujisaki, Kanta Sato, Kazuma Iwata, Mariko Abe, Hisashi Asanuma, Masahiko Sato, Yusuke Sawaki, Kaoru Sugihara
{"title":"Geotectonic Identity of Cretaceous-Paleogene Granitoids in the Tsukuba Igneous Complex, Japan: A New Multi-Proxy Reassessment","authors":"Wataru Fujisaki,&nbsp;Kanta Sato,&nbsp;Kazuma Iwata,&nbsp;Mariko Abe,&nbsp;Hisashi Asanuma,&nbsp;Masahiko Sato,&nbsp;Yusuke Sawaki,&nbsp;Kaoru Sugihara","doi":"10.1111/iar.70015","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To reassess the geotectonic identity of the Tsukuba Igneous Complex (TIC) granitoids, we compiled a comprehensive data set of the granitoids and associated microgranular enclaves (MGEs) using zircon U–Pb geochronology, magnetic susceptibility (MS) analysis, and whole-rock geochemistry. The TIC granitoids comprised high-K, calcic to calc-alkaline, and peraluminous I-type granite. SiO<sub>2</sub> values were relatively high, and enrichment in Pb was observed while Ti and Nb were both depleted. The trace element signatures are diagnostic indicators for rocks formed in subduction-related settings. The MGEs in the Kabasan granitoid body were almost coeval with the host granitoids at ca. 79–76 Ma. Taking into consideration the mineral and geochemical compositions between the MGEs and the host granitoids, it was concluded that the MGEs originated from diorite xenoliths. Moreover, our new zircon U–Pb dating of TIC granitoids and MGEs showed that the TIC emplacement ages are divided into two groups; that is, ca. 80–76 Ma and ca. 70–61 Ma. This fact clearly demonstrates that TIC magmatism occurred two times during the Late Cretaceous to Early Paleogene. On the other hand, the data of TIC MS is two or three orders of magnitude lower than that of San-in granitoids MS, and the TIC granitoids belong to the ilmenite-series. The MS differences between the TIC and San-in granitoids can be explained by the amount of involved sediment, indicating that the zircon U–Pb dating is the most appropriate proxy for the reassessment of the geological identity of TIC granitoids. Accordingly, we propose that the TIC granitoids have two separate origins based on the emplacement age: that is, the Late Cretaceous TIC granitoids belong to those of the Ryoke or San-yo belts, whereas the Early Paleogene TIC granitoids are considered as the eastern extension of the San-in belt.</p>\n </div>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"34 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.70015","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To reassess the geotectonic identity of the Tsukuba Igneous Complex (TIC) granitoids, we compiled a comprehensive data set of the granitoids and associated microgranular enclaves (MGEs) using zircon U–Pb geochronology, magnetic susceptibility (MS) analysis, and whole-rock geochemistry. The TIC granitoids comprised high-K, calcic to calc-alkaline, and peraluminous I-type granite. SiO2 values were relatively high, and enrichment in Pb was observed while Ti and Nb were both depleted. The trace element signatures are diagnostic indicators for rocks formed in subduction-related settings. The MGEs in the Kabasan granitoid body were almost coeval with the host granitoids at ca. 79–76 Ma. Taking into consideration the mineral and geochemical compositions between the MGEs and the host granitoids, it was concluded that the MGEs originated from diorite xenoliths. Moreover, our new zircon U–Pb dating of TIC granitoids and MGEs showed that the TIC emplacement ages are divided into two groups; that is, ca. 80–76 Ma and ca. 70–61 Ma. This fact clearly demonstrates that TIC magmatism occurred two times during the Late Cretaceous to Early Paleogene. On the other hand, the data of TIC MS is two or three orders of magnitude lower than that of San-in granitoids MS, and the TIC granitoids belong to the ilmenite-series. The MS differences between the TIC and San-in granitoids can be explained by the amount of involved sediment, indicating that the zircon U–Pb dating is the most appropriate proxy for the reassessment of the geological identity of TIC granitoids. Accordingly, we propose that the TIC granitoids have two separate origins based on the emplacement age: that is, the Late Cretaceous TIC granitoids belong to those of the Ryoke or San-yo belts, whereas the Early Paleogene TIC granitoids are considered as the eastern extension of the San-in belt.

日本筑波火成岩杂岩白垩系-古近系花岗岩类大地构造特征:一种新的多代理重新评价
为了重新评估筑波火成岩杂岩(TIC)花岗岩类的大地构造特征,我们利用锆石U-Pb年代学、磁化率(MS)分析和全岩地球化学分析,编制了花岗岩类及其微颗粒包体(MGEs)的综合数据集。TIC花岗岩类主要为高钾、钙-钙碱性、过铝型花岗岩。SiO2值较高,Pb富集,Ti和Nb均亏缺。微量元素特征是与俯冲有关的环境下形成的岩石的诊断指标。在79 ~ 76 Ma之间,Kabasan花岗岩岩体的MGEs与寄主花岗岩岩体基本一致。综合其与寄主花岗岩的矿物组成和地球化学组成,认为其成因为闪长岩捕虏体。此外,我们对TIC花岗岩类和MGEs的锆石U-Pb定年结果表明,TIC侵位年龄可分为两组;即约80-76毫安和70-61毫安。这一事实清楚地表明,在晚白垩世至早古近纪发生过两次TIC岩浆活动。另一方面,TIC质谱数据比San-in花岗岩质谱低2 ~ 3个数量级,属于钛铁矿系列。锆石U-Pb定年是重新评价TIC花岗岩地质特征最合适的代用指标。据此,根据侵位年代,我们认为北太平洋中生代花岗岩类有两个不同的起源,即晚白垩世的北太平洋中生代花岗岩类属于Ryoke或San-yo带,而早古近纪的北太平洋中生代花岗岩类属于San-in带的东延。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Island Arc
Island Arc 地学-地球科学综合
CiteScore
2.90
自引率
26.70%
发文量
32
审稿时长
>12 weeks
期刊介绍: Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication. Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信